11,463 research outputs found

    Frictional drag between quantum wells mediated by fluctuating electromagnetic field

    Full text link
    We use the theory of the fluctuating electromagnetic field to calculate the frictional drag between nearby two-and three dimensional electron systems. The frictional drag results from coupling via a fluctuating electromagnetic field, and can be considered as the dissipative part of the van der Waals interaction. In comparison with other similar calculations for semiconductor two-dimensional system we include retardation effects. We consider the dependence of the frictional drag force on the temperature TT, electron density and separation dd. We find, that retardation effects become dominating factor for high electron densities, corresponding thing metallic film, and suggest a new experiment to test the theory. The relation between friction and heat transfer is also briefly commented on.Comment: 14 pages, 4 figure

    Cluster Dynamics for Randomly Frustrated Systems with Finite Connectivity

    Full text link
    In simulations of some infinite range spin glass systems with finite connectivity, it is found that for any resonable computational time, the saturatedenergy per spin that is achieved by a cluster algorithm is lowered in comparison to that achieved by Metropolis dynamics.The gap between the average energies obtained from these two dynamics is robust with respect to variations of the annealing schedule. For some probability distribution of the interactions the ground state energy is calculated analytically within the replica symmetry assumptionand is found to be saturated by a cluster algorithm.Comment: Revtex, 4 pages with 3 figure

    Dicke Coherent Narrowing in Two-Photon and Raman Spectroscopy of Thin Vapour Cells

    Full text link
    The principle of coherent Dicke narrowing in a thin vapour cell, in which sub-Doppler spectral lineshapes are observed under a normal irradiation for a l/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler-broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300 nm-thick Cs cell. Extension to the Raman situation is finally considered

    Representations of Coherent and Squeezed States in a ff-deformed Fock Space

    Full text link
    We establish some of the properties of the states interpolating between number and coherent states denoted by n>λ| n >_{\lambda}; among them are the reproducing of these states by the action of an operator-valued function on n>| n> (the standard Fock space) and the fact that they can be regarded as ff-deformed coherent bound states. In this paper we use them, as the basis of our new Fock space which in this case are not orthogonal but normalized. Then by some special superposition of them we obtain new representations for coherent and squeezed states in the new basis. Finally the statistical properties of these states are studied in detail.Comment: 13 pages, 4 Figure

    Some useful combinatorial formulae for bosonic operators

    Get PDF
    We give a general expression for the normally ordered form of a function F(w(a,a*)) where w is a function of boson annihilation and creation operators satisfying [a,a*]=1. The expectation value of this expression in a coherent state becomes an exact generating function of Feynman-type graphs associated with the zero-dimensional Quantum Field Theory defined by F(w). This enables one to enumerate explicitly the graphs of given order in the realm of combinatorially defined sequences. We give several examples of the use of this technique, including the applications to Kerr-type and superfluidity-type hamiltonians.Comment: 8 pages, 3 figures, 17 reference

    Mean Field Behavior of Cluster Dynamics

    Full text link
    The dynamic behavior of cluster algorithms is analyzed in the classical mean field limit. Rigorous analytical results below TcT_c establish that the dynamic exponent has the value zsw=1z_{sw}=1 for the Swendsen-Wang algorithm and zuw=0z_{uw}=0 for the Wolff algorithm. An efficient Monte Carlo implementation is introduced, adapted for using these algorithms for fully connected graphs. Extensive simulations both above and below TcT_c demonstrate scaling and evaluate the finite-size scaling function by means of a rather impressive collapse of the data.Comment: Revtex, 9 pages with 7 figure

    The Role of Vortices in the Mutual Coupling of Superconducting and Normal-Metal Films

    Full text link
    I propose a possible explanation to a recently observed ``cross-talk'' effect in metal-insulator-metal trilayers, indicating a sharp peak near a superconducting transition in one of the metal films. Coulomb interactions are excluded as a dominant coupling mechanism, and an alternative is suggested, based on the local fluctuating electric field induced by mobile vortices in the superconducting layer. This scenario is compatible with the magnitude of the peak signal and its shape; most importantly, it addresses the {\it non-reciprocity} of the effect in exchanging the roles of the films.Comment: 13 pages, RevTe

    Coulomb Drag at the Onset of Anderson Insulators

    Full text link
    It is shown that the Coulomb drag between two identical layers in the Anderson insulting state indicates a striking difference between the Mott and Efros-Shklovskii (ES) insulators. In the former, the trans-resistance ρt\rho_t is monotonically increasing with the localization length ξ\xi; in the latter, the presence of a Coulomb gap leads to an opposite result: ρt\rho_t is enhanced with a decreasing ξ\xi, with the same exponential factor as the single layer resistivity. This distinction reflects the relatively pronounced role of excited density fluctuations in the ES state, implied by the enhancement in the rate of hopping processes at low frequencies. The magnitude of drag is estimated for typical experimental parameters in the different cases. It is concluded that a measurement of drag can be used to distinguish between interacting and non-interacting insulating state.Comment: 15 pages, revte
    corecore