11,463 research outputs found
Frictional drag between quantum wells mediated by fluctuating electromagnetic field
We use the theory of the fluctuating electromagnetic field to calculate the
frictional drag between nearby two-and three dimensional electron systems. The
frictional drag results from coupling via a fluctuating electromagnetic field,
and can be considered as the dissipative part of the van der Waals interaction.
In comparison with other similar calculations for semiconductor two-dimensional
system we include retardation effects. We consider the dependence of the
frictional drag force on the temperature , electron density and separation
. We find, that retardation effects become dominating factor for high
electron densities, corresponding thing metallic film, and suggest a new
experiment to test the theory. The relation between friction and heat transfer
is also briefly commented on.Comment: 14 pages, 4 figure
Cluster Dynamics for Randomly Frustrated Systems with Finite Connectivity
In simulations of some infinite range spin glass systems with finite
connectivity, it is found that for any resonable computational time, the
saturatedenergy per spin that is achieved by a cluster algorithm is lowered in
comparison to that achieved by Metropolis dynamics.The gap between the average
energies obtained from these two dynamics is robust with respect to variations
of the annealing schedule. For some probability distribution of the
interactions the ground state energy is calculated analytically within the
replica symmetry assumptionand is found to be saturated by a cluster algorithm.Comment: Revtex, 4 pages with 3 figure
Dicke Coherent Narrowing in Two-Photon and Raman Spectroscopy of Thin Vapour Cells
The principle of coherent Dicke narrowing in a thin vapour cell, in which
sub-Doppler spectral lineshapes are observed under a normal irradiation for a
l/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the
two wave vectors must be normal to the cell, making the two-photon scheme
highly versatile. A comparison is provided between the Dicke narrowing with
copropagating fields, and the residual Doppler-broadening occurring with
counterpropagating geometries. The experimental feasibility is discussed on the
basis of a first observation of a two-photon resonance in a 300 nm-thick Cs
cell. Extension to the Raman situation is finally considered
Representations of Coherent and Squeezed States in a -deformed Fock Space
We establish some of the properties of the states interpolating between
number and coherent states denoted by ; among them are the
reproducing of these states by the action of an operator-valued function on (the standard Fock space) and the fact that they can be regarded as
-deformed coherent bound states. In this paper we use them, as the basis of
our new Fock space which in this case are not orthogonal but normalized. Then
by some special superposition of them we obtain new representations for
coherent and squeezed states in the new basis. Finally the statistical
properties of these states are studied in detail.Comment: 13 pages, 4 Figure
Some useful combinatorial formulae for bosonic operators
We give a general expression for the normally ordered form of a function
F(w(a,a*)) where w is a function of boson annihilation and creation operators
satisfying [a,a*]=1. The expectation value of this expression in a coherent
state becomes an exact generating function of Feynman-type graphs associated
with the zero-dimensional Quantum Field Theory defined by F(w). This enables
one to enumerate explicitly the graphs of given order in the realm of
combinatorially defined sequences. We give several examples of the use of this
technique, including the applications to Kerr-type and superfluidity-type
hamiltonians.Comment: 8 pages, 3 figures, 17 reference
Mean Field Behavior of Cluster Dynamics
The dynamic behavior of cluster algorithms is analyzed in the classical mean
field limit. Rigorous analytical results below establish that the dynamic
exponent has the value for the Swendsen-Wang algorithm and
for the Wolff algorithm.
An efficient Monte Carlo implementation is introduced, adapted for using
these algorithms for fully connected graphs. Extensive simulations both above
and below demonstrate scaling and evaluate the finite-size scaling
function by means of a rather impressive collapse of the data.Comment: Revtex, 9 pages with 7 figure
The Role of Vortices in the Mutual Coupling of Superconducting and Normal-Metal Films
I propose a possible explanation to a recently observed ``cross-talk'' effect
in metal-insulator-metal trilayers, indicating a sharp peak near a
superconducting transition in one of the metal films. Coulomb interactions are
excluded as a dominant coupling mechanism, and an alternative is suggested,
based on the local fluctuating electric field induced by mobile vortices in the
superconducting layer. This scenario is compatible with the magnitude of the
peak signal and its shape; most importantly, it addresses the {\it
non-reciprocity} of the effect in exchanging the roles of the films.Comment: 13 pages, RevTe
Coulomb Drag at the Onset of Anderson Insulators
It is shown that the Coulomb drag between two identical layers in the
Anderson insulting state indicates a striking difference between the Mott and
Efros-Shklovskii (ES) insulators. In the former, the trans-resistance
is monotonically increasing with the localization length ; in the latter,
the presence of a Coulomb gap leads to an opposite result: is enhanced
with a decreasing , with the same exponential factor as the single layer
resistivity. This distinction reflects the relatively pronounced role of
excited density fluctuations in the ES state, implied by the enhancement in the
rate of hopping processes at low frequencies. The magnitude of drag is
estimated for typical experimental parameters in the different cases. It is
concluded that a measurement of drag can be used to distinguish between
interacting and non-interacting insulating state.Comment: 15 pages, revte
- …
