73 research outputs found

    Incidences between points and lines in three dimensions

    Get PDF
    We give a fairly elementary and simple proof that shows that the number of incidences between mm points and nn lines in R3{\mathbb R}^3, so that no plane contains more than ss lines, is O(m1/2n3/4+m2/3n1/3s1/3+m+n) O\left(m^{1/2}n^{3/4}+ m^{2/3}n^{1/3}s^{1/3} + m + n\right) (in the precise statement, the constant of proportionality of the first and third terms depends, in a rather weak manner, on the relation between mm and nn). This bound, originally obtained by Guth and Katz~\cite{GK2} as a major step in their solution of Erd{\H o}s's distinct distances problem, is also a major new result in incidence geometry, an area that has picked up considerable momentum in the past six years. Its original proof uses fairly involved machinery from algebraic and differential geometry, so it is highly desirable to simplify the proof, in the interest of better understanding the geometric structure of the problem, and providing new tools for tackling similar problems. This has recently been undertaken by Guth~\cite{Gu14}. The present paper presents a different and simpler derivation, with better bounds than those in \cite{Gu14}, and without the restrictive assumptions made there. Our result has a potential for applications to other incidence problems in higher dimensions

    Incidence estimates for well spaced tubes

    Full text link
    We prove analogues of the Szemer\'edi-Trotter theorem and other incidence theorems using δ\delta-tubes in place of straight lines, assuming that the δ\delta-tubes are well-spaced in a strong sense.Comment: 17 page

    A Generalized Matching Reconfiguration Problem

    Get PDF
    The goal in reconfiguration problems is to compute a gradual transformation between two feasible solutions of a problem such that all intermediate solutions are also feasible. In the Matching Reconfiguration Problem (MRP), proposed in a pioneering work by Ito et al. from 2008, we are given a graph G and two matchings M and M\u27, and we are asked whether there is a sequence of matchings in G starting with M and ending at M\u27, each resulting from the previous one by either adding or deleting a single edge in G, without ever going through a matching of size < min{|M|,|M\u27|}-1. Ito et al. gave a polynomial time algorithm for the problem, which uses the Edmonds-Gallai decomposition. In this paper we introduce a natural generalization of the MRP that depends on an integer parameter ? ? 1: here we are allowed to make ? changes to the current solution rather than 1 at each step of the {transformation procedure}. There is always a valid sequence of matchings transforming M to M\u27 if ? is sufficiently large, and naturally we would like to minimize ?. We first devise an optimal transformation procedure for unweighted matching with ? = 3, and then extend it to weighted matchings to achieve asymptotically optimal guarantees. The running time of these procedures is linear. We further demonstrate the applicability of this generalized problem to dynamic graph matchings. In this area, the number of changes to the maintained matching per update step (the recourse bound) is an important quality measure. Nevertheless, the worst-case recourse bounds of almost all known dynamic matching algorithms are prohibitively large, much larger than the corresponding update times. We fill in this gap via a surprisingly simple black-box reduction: Any dynamic algorithm for maintaining a ?-approximate maximum cardinality matching with update time T, for any ? ? 1, T and ? > 0, can be transformed into an algorithm for maintaining a (?(1 +?))-approximate maximum cardinality matching with update time T + O(1/?) and worst-case recourse bound O(1/?). This result generalizes for approximate maximum weight matching, where the update time and worst-case recourse bound grow from T + O(1/?) and O(1/?) to T + O(?/?) and O(?/?), respectively; ? is the graph aspect-ratio. We complement this positive result by showing that, for ? = 1+?, the worst-case recourse bound of any algorithm produced by our reduction is optimal. As a corollary, several key dynamic approximate matching algorithms - with poor worst-case recourse bounds - are strengthened to achieve near-optimal worst-case recourse bounds with no loss in update time

    Ramsey-type theorems for lines in 3-space

    Full text link
    We prove geometric Ramsey-type statements on collections of lines in 3-space. These statements give guarantees on the size of a clique or an independent set in (hyper)graphs induced by incidence relations between lines, points, and reguli in 3-space. Among other things, we prove that: (1) The intersection graph of n lines in R^3 has a clique or independent set of size Omega(n^{1/3}). (2) Every set of n lines in R^3 has a subset of n^{1/2} lines that are all stabbed by one line, or a subset of Omega((n/log n)^{1/5}) such that no 6-subset is stabbed by one line. (3) Every set of n lines in general position in R^3 has a subset of Omega(n^{2/3}) lines that all lie on a regulus, or a subset of Omega(n^{1/3}) lines such that no 4-subset is contained in a regulus. The proofs of these statements all follow from geometric incidence bounds -- such as the Guth-Katz bound on point-line incidences in R^3 -- combined with Tur\'an-type results on independent sets in sparse graphs and hypergraphs. Although similar Ramsey-type statements can be proved using existing generic algebraic frameworks, the lower bounds we get are much larger than what can be obtained with these methods. The proofs directly yield polynomial-time algorithms for finding subsets of the claimed size.Comment: 18 pages including appendi

    Incidences between points and lines in R^4

    Full text link
    We show that the number of incidences between mm distinct points and nn distinct lines in R4{\mathbb R}^4 is O(2clogm(m2/5n4/5+m)+m1/2n1/2q1/4+m2/3n1/3s1/3+n)O\left(2^{c\sqrt{\log m}} (m^{2/5}n^{4/5}+m) + m^{1/2}n^{1/2}q^{1/4} + m^{2/3}n^{1/3}s^{1/3} + n\right), for a suitable absolute constant cc, provided that no 2-plane contains more than ss input lines, and no hyperplane or quadric contains more than qq lines. The bound holds without the factor 2clogm2^{c\sqrt{\log m}} when mn6/7m \le n^{6/7} or mn5/3m \ge n^{5/3}. Except for this factor, the bound is tight in the worst case
    corecore