2 research outputs found

    Innate chemical, but not visual, threat cues have been co‐opted as unconditioned stimulus for social fear learning in zebrafish

    Get PDF
    Animals can use social information to detect threat in the environment. In particular, social learning allows animals to learn about dangers without incurring in the costs of trial-and-error learning. In zebrafish, both chemical and visual social cues elicit an innate alarm response, which consists of erratic movement followed by freezing behavior. Injured zebrafish release an alarm substance from their skin that elicits the alarm response. Similarly, the sight of conspecifics displaying the alarm response can also elicit the expression of this response in observers. In this study, we investigated if these social cues of danger can also be used by zebrafish as unconditioned stimulus (US) in learning. We found that only the chemical cue was effective in the social fear conditioning. We suggest that this differential efficacy of social cues results from the fact that the alarm cue is a more reliable indicator of threat, than the sight of an alarmed conspecific. Therefore, although multiple social cues may elicit innate responses not all have been evolutionarily co-opted to act as US in associative learning. Furthermore, the use of the expression of the immediate early genes as markers of neuronal activity showed that chemical social fear conditioning is paralleled by a differential activation of the olfactory bulbs and by a different pattern of functional connectivity across brain regions involved in olfactory processing.FCT - Fundação para a Ciência e Tecnologiainfo:eu-repo/semantics/publishedVersio

    Fighting assessment triggers rapid changes in activity of the brain social Decision-Making network of cichlid fish

    Get PDF
    Social living animals have to adjust their behavior to rapid changes in the social environment. It has been hypothesized that the expression of social behavior is better explained by the activity pattern of a diffuse social decision-making network (SDMN) in the brain than by the activity of a single brain region. In this study, we tested the hypothesis that it is the assessment that individuals make of the outcome of the fights, rather than the expression of aggressive behavior per se, that triggers changes in the pattern of activation of the SDMN which are reflected in socially driven behavioral profiles (e.g., dominant vs. subordinate specific behaviors). For this purpose, we manipulated the perception of the outcome of an agonistic interaction in an African cichlid fish (Oreochromis mossambicus) and assessed if either the perception of outcome or fighting by itself was sufficient to trigger rapid changes in the activity of the SDMN. We have used the expression of immediate early genes (c-fos and egr-1) as a proxy to measure the neuronal activity in the brain. Fish fought their own image on a mirror for 15 min after which they were allocated to one of three conditions for the two last minutes of the trial: (1) they remained fighting the mirror image (no outcome treatment); (2) the mirror was lifted and a dominant male that had just won a fight was presented behind a transparent partition (perception of defeat treatment); and (3) the mirror was lifted and a subordinate male that had just lost a fight was presented behind a transparent partition (perception of victory treatment). Results show that these short-term social interactions elicit distinct patterns in the SDMN and that the perception of the outcome was not a necessary condition to trigger a SDMN response as evidenced in the second treatment (perception of defeat treatment). We suggest that the mutual assessment of relative fighting behavior drives these acute changes in the state of the SDMN.Fundação para a Ciência e Tecnologia-FCTinfo:eu-repo/semantics/publishedVersio
    corecore