44 research outputs found

    Three-dimensional echocardiography for left ventricular quantification: fundamental validation and clinical applications

    Get PDF
    One of the earliest applications of clinical echocardiography is evaluation of left ventricular (LV) function and size. Accurate, reproducible and quantitative evaluation of LV function and size is vital for diagnosis, treatment and prediction of prognosis of heart disease. Early three-dimensional (3D) echocardiographic techniques showed better reproducibility than two-dimensional (2D) echocardiography and narrower limits of agreement for assessment of LV function and size in comparison to reference methods, mostly cardiac magnetic resonance (CMR) imaging, but acquisition methods were cumbersome and a lack of user-friendly analysis software initially precluded widespread use. Through the advent of matrix transducers enabling real-time three-dimensional echocardiography (3DE) and improvements in analysis software featuring semi-automated volumetric analysis, 3D echocardiography evolved into a simple and fast imaging modality for everyday clinical use. 3DE provides the possibility to evaluate the entire LV in three spatial dimensions during the complete cardiac cycle, offering a more accurate and complete quantitative evaluation the LV. Improved efficiency in acquisition and analysis may provide clinicians with important diagnostic information within minutes. The current article reviews the methodology and application of 3DE for quantitative evaluation of the LV, provides the scientific evidence for its current clinical use, and discusses its current limitations and potential future directions

    Automated analysis of three-dimensional stress echocardiography

    Get PDF
    Real-time three-dimensional (3D) ultrasound imaging has been proposed as an alternative for two-dimensional stress echocardiography for assessing myocardial dysfunction and underlying coronary artery disease. Analysis of 3D stress echocardiography is no simple task and requires considerable expertise. In this paper, we propose methods for automated analysis, which may provide a more objective and accurate diagnosis. Expert knowledge is incorporated via statistical modelling of patient data. Methods for identifying anatomical views, detecting endocardial borders, and classification of wall motion are described and shown to provide favourable results. We also present software developed especially for analysis of 3D stress echocardiography in clinical practice. Interobserver agreement in wall motion scoring is better using the dedicated software (96%) than commercially available software not dedicated for this purpose (79%). The developed tools may provide useful quantitative and objective parameters to assist the clinical expert in the diagnosis of left ventricular function

    Increased aortic stiffness and blood pressure in non-classic Pompe disease

    Get PDF
    Vascular abnormalities and glycogen accumulation in vascular smooth muscle fibres have been described in Pompe disease. Using carotid-femoral pulse wave velocity (cfPWV), the gold standard methodology for determining aortic stiffness, we studied whether aortic stiffness is increased in patients with Pompe disease. Eighty-four adult Pompe patients and 179 age- and gender-matched volunteers participated in this cross-sectional case-controlled study. Intima media thickness and the distensibility of the right common carotid artery were measured using a Duplex scanner. Aortic augmentation index, central pulse pressure, aortic reflexion time and cfPWV were assessed using the SphygmoCor® system. CfPWV was higher in patients than in volunteers (8.8 versus 7.4 m/s, p < 0.001). This difference was still present after adjustment for age, gender, mean arterial blood pressure (MAP), heart rate and diabetes mellitus (p = 0.001), and was shown by subgroup analysis to apply to the 40-59 years age group (p = 0.004) and 60+ years age group (p = 0.01), but not to younger age groups (p = 0.99). Except for a shorter aortic reflexion time (p = 0.02), indirect indicators of arterial stiffness did not differ between patients and volunteers. Relative to volunteers (20 %), more Pompe patients had a history of hypertension (36 %, p = 0.005), and the MAP was higher than in volunteers (100 versus 92 mmHg, p < 0.001). This study shows that patients with non-classic Pompe disease have increased aortic stiffness and blood pressure. Whether this is due to glycogen accumulation requires further investigation. To reduce the potential risk of cardiovascular diseases, we recommend that blood pressure and other common cardiovascular risk factors are monitored regularly

    Over-Expression of DSCAM and COL6A2 Cooperatively Generates Congenital Heart Defects

    Get PDF
    A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype. We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect on heart physiology or morphology, co-expression of the two genes resulted in ≈50% mortality and severe physiological and morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2 suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific loci mediating a broad variety of other polygenic disorders

    Echocardiographic prediction of outcome after cardiac resynchronization therapy: conventional methods and recent developments

    Get PDF
    Echocardiography plays an important role in patient assessment before cardiac resynchronization therapy (CRT) and can monitor many of its mechanical effects in heart failure patients. Encouraged by the highly variable individual response observed in the major CRT trials, echocardiography-based measurements of mechanical dyssynchrony have been extensively investigated with the aim of improving response prediction and CRT delivery. Despite recent setbacks, these techniques have continued to develop in order to overcome some of their initial flaws and limitations. This review discusses the concepts and rationale of the available echocardiographic techniques, highlighting newer quantification methods and discussing some of the unsolved issues that need to be addressed

    Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization

    Get PDF
    Cardiac resynchronization therapy (CRT) aims to treat selected heart failure patients suffering from conduction abnormalities with left bundle branch block (LBBB) as the culprit disease. LBBB remained largely underinvestigated until it became apparent that the amount of response to CRT was heterogeneous and that the therapy and underlying pathology were thus incompletely understood. In this review, current knowledge concerning activation in LBBB and during biventricular pacing will be explored and applied to current CRT practice, highlighting novel ways to better measure and treat the electrical substrate

    Left ventricular diastolic function is strongly correlated with active emptying of the left atrium: a novel analysis using three-dimensional echocardiography

    Get PDF
    BACKGROUND: Increased left atrial (LA) dimensions are known to be a risk factor in predicting cardiovascular events and mortality and to be one key diagnostic tool to assess diastolic dysfunction. Currently, LA measurements are usually conducted using 2D-echocardiography, although there are well-known limitations. Real-time 3D-echocardiography is able to overcome these limitations, furthermore being a valid measurement tool compared to reference standards (e.g. cardiac magnetic resonance imaging). We investigated LA function and volume and their association to left ventricular (LV) diastolic function, using newly designed and validated software for 3D-echocardiographic analysis. This software is the first to allow for a sophisticated analysis of both passive and active LA emptying. METHODS: We analyzed 2D- and 3D-echocardiographic measurements of LA volume and function in 56 subjects and compared the results between patients with normal LV diastolic function (NDF) (n = 30, 52 ± 15 years, BMI 24.7 ± 2.6 kg/m(2)) and patients in which diastolic dysfunction (DDF) was suspected (n = 26, 65 ± 9 years, BMI 26.7 ± 3.7 kg/m(2)). RESULTS: Volumes during LA active emptying were significantly smaller in DDF compared to NDF (active atrial stroke volume (ASV): 3.0 (0.1–4.5) vs. 5.5 (2.7–7.8) ml, p = 0.005; True-EF: 7.3(0.1–11.5) vs. 16.2 (8.1–25.4) %, p = 0.002). Furthermore, ASV showed a stronger association to E/e’(mean) than all other measured LA volumes (β = − 0.35, p = 0.008). Neither total stroke LA volume, nor maximum or minimum LA volume differed significantly between the groups. CONCLUSIONS: Diastolic LV dysfunction results in a reduction in active LA emptying, which is more strongly associated with LV filling pressure than other previously investigated LA parameters

    Determinants of myocardial energetics and efficiency in symptomatic hypertrophic cardiomyopathy

    Get PDF
    Next to hypertrophy, hypertrophic cardiomyopathy (HCM) is characterized by alterations in myocardial energetics. A small number of studies have shown that myocardial external efficiency (MEE), defined by external work (EW) in relation to myocardial oxidative metabolism (MVO2), is reduced. The present study was conducted to identify determinants of MEE in patients with HCM by use of dynamic positron emission tomography (PET) and cardiovascular magnetic resonance imaging (CMR). Twenty patients with HCM (12 men, mean age: 55.2 +/- 13.9 years) and 11 healthy controls (7 men, mean age: 48.1 +/- 10 years) were studied with [C-11]acetate PET to assess MVO2. CMR was performed to determine left ventricular (LV) volumes and mass (LVM). Univariate and multivariate analyses were employed to determine independent predictors of myocardial efficiency. Between study groups, MVO2 (controls: 0.12 +/- 0.04 ml center dot min(-1)center dot g(-1), HCM: 0.13 +/- 0.05 ml center dot min(-1)center dot g(-1), p = 0.64) and EW (controls: 9,139 +/- 2,484 mmHg center dot ml, HCM: 9,368 +/- 2,907 mmHg center dot ml, p = 0.83) were comparable, whereas LVM was significantly higher (controls: 99 +/- 21 g, HCM: 200 +/- 76 g, p < 0.001) and MEE was decreased in HCM patients (controls: 35 +/- 8%, HCM: 21 +/- 10%, p < 0.001). MEE was related to stroke volume (SV), LV outflow tract gradient, NH2-terminal pro-brain natriuretic peptide (NT-proBNP) and serum free fatty acid levels (all p < 0.05). Multivariate analysis revealed that SV ( = 0.74, p < 0.001) and LVM ( = -0.43, p = 0.013) were independently related to MEE. HCM is characterized by unaltered MVO2, impaired EW generation per gram of myocardial tissue and subsequent deteriorated myocardial efficiency. Mechanical external efficiency could independently be predicted by SV and LVM
    corecore