130 research outputs found

    Designing New Yeasts for Craft Brewing: When Natural Biodiversity Meets Biotechnology

    Get PDF
    Beer is a fermented beverage with a history as old as human civilization. Ales and lagers are by far the most common beers; however, diversification is becoming increasingly important in the brewing market and the brewers are continuously interested in improving and extending the range of products, especially in the craft brewery sector. Fermentation is one of the widest spaces for innovation in the brewing process. Besides Saccharomyces cerevisiae ale and Saccharomyces pastorianus lager strains conventionally used in macro-breweries, there is an increasing demand for novel yeast starter cultures tailored for producing beer styles with diversified aroma profiles. Recently, four genetic engineering-free approaches expanded the genetic background and the phenotypic biodiversity of brewing yeasts and allowed novel costumed-designed starter cultures to be developed: (1) the research for new performant S. cerevisiae yeasts from fermented foods alternative to beer; (2) the creation of synthetic hybrids between S. cerevisiae and Saccharomyces non-cerevisiae in order to mimic lager yeasts; (3) the exploitation of evolutionary engineering approaches; (4) the usage of non-Saccharomyces yeasts. Here, we summarized the pro and contra of these approaches and provided an overview on the most recent advances on how brewing yeast genome evolved and domestication took place. The resulting correlation maps between genotypes and relevant brewing phenotypes can assist and further improve the search for novel craft beer starter yeasts, enhancing the portfolio of diversified products offered to the final customer

    Effect of Fermentation with Streptococcus thermophilus Strains on In Vitro Gastro-Intestinal Digestion of Whey Protein Concentrates

    Get PDF
    Three Streptococcus thermophilus strains, namely RBC6, RBC20, and RBN16, were proven to release bioactive peptides during whey protein concentrate (WPC) fermentation, resulting in WPC hydrolysates with biological activities. However, these bioactive peptides can break down during gastro-intestinal digestion (GID), hindering the health-promoting effect of fermented WPC hydrolysates in vivo. In this work, the effect of simulated GID on three WPC hydrolysates fermented with S. thermophilus strains, as well as on unfermented WPC was studied in terms of protein hydrolysis, biological activities, and peptidomics profiles, respectively. In general, WPC fermentation enhanced protein hydrolysis compared to unfermented WPC. After in vitro GID, WPC fermented with S. thermophilus RBC20 showed the highest antioxidant activity, whereas WPC fermented with strain RBC06 displayed the highest angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase IV (DPP-IV)-inhibitory activities. Peptidomics analysis revealed that all digested WPC samples were highly similar to each other in peptide profiles, and 85% of the 46 identified bioactive peptides were shared among fermented and unfermented samples. However, semi-quantitative analysis linked the observed differences in biological activities among the samples to differences in the amount of bioactive peptides. The anti-hypertensive peptides VPP and IPP, as well as the DPP-IV-inhibitory peptide APFPE, were quantified. In conclusion, WPC fermentation with S. thermophilus positively impacted protein hydrolysis and bioactive peptide release during GID

    An integrated peptidomics and in silico approach to identify novel anti-diabetic peptides in parmigiano-reggiano cheese

    Get PDF
    Inhibition of key metabolic enzymes linked to type-2-diabetes (T2D) by food-derived compounds is a preventive emerging strategy in the management of T2D. Here, the impact of Parmigiano- Reggiano (PR) cheese peptide fractions, at four different ripening times (12, 18, 24, and 30 months), on the enzymatic activity of α-glucosidase, α-amylase, and dipeptidyl peptidase-IV (DPPIV) as well as on the formation of fluorescent advanced glycation end-products (fAGEs) was assessed. The PR peptide fractions were able to inhibit the selected enzymes and fAGEs formation. The 12-month-ripening PR sample was the most active against the three enzymes and fAGEs. Mass spectrometry analysis enabled the identification of 415 unique peptides, 54.9% of them common to the four PR samples. Forty-nine previously identified bioactive peptides were found, mostly characterized as angiotensin-converting enzyme-inhibitors. The application of an integrated approach that combined peptidomics, in silico analysis, and a structure–activity relationship led to an efficient selection of 6 peptides with potential DPP-IV and α-glucosidase inhibitory activities. Peptide APFPE was identified as a potent novel DPP-IV inhibitor (IC50 = 49.5 ± 0.5 μmol/L). In addition, the well-known anti-hypertensive tripeptide, IPP, was the only one able to inhibit the three digestive enzymes, highlighting its possible new and pivotal role in diabetes management

    Peptide profiling and biological activities of 12- month ripened parmigiano reggiano cheese

    Get PDF
    Proteolysis degree, biological activities, and water-soluble peptide patterns were evaluated in 12 month-ripened Parmigiano Reggiano (PR) cheeses collected in different dairy farms and showing different salt and fat content. Samples classified in high-salt and high-fat group (HH) generally showed lower proteolysis degree than samples having low-salt and low-fat content (LL). This positive correlation between salt/fat reduction and proteolysis was also confirmed by the analysis of biological activities, as the LL group showed higher average values of angiotensin-converting enzyme (ACE)-inhibitory and antioxidant activities. UHPLC/HR-MS allowed the identification of 805 unique peptides: LL and HH groups shared 59.3% of these peptides, while 20.9% and 19.9% were LL and HH specific, respectively. Frequency analysis of peptides identified a core of 183 peptides typical of 12-month ripened PR cheeses (corresponding to the 22.7% of total peptides), but no significant differences were detected in peptide patterns between LL and HH groups. Forty bioactive peptides, including 18 ACE-inhibitors and 12 anti-microbial peptides, were identified, of which 25 firstly found in PR cheese. Globally, this work contributed to unraveling the potentially healthy benefits of peptides fraction in PR cheese and provided prior evidence that PR with reduced at/salt content showed the highest antihypertensive and antioxidant activities

    Characterization of yeasts isolated from parmigiano reggiano cheese natural whey starter: From spoilage agents to potential cell factories for whey valorization

    Get PDF
    Whey is the main byproduct of the dairy industry and contains sugars (lactose) and proteins (especially serum proteins and, at lesser extent, residual caseins), which can be valorized by the fermentative action of yeasts. In the present study, we characterized the spoilage yeast population inhabiting natural whey starter (NWS), the undefined starter culture of thermophilic lactic acid bacteria used in Parmigiano Reggiano (PR) cheesemaking, and evaluated thermotolerance, mating type, and the aptitude to produce ethanol and bioactive peptides from whey lactose and proteins, respectively, in a selected pool of strains. PCR-RFLP assay of ribosomal ITS regions and phylogenetic analysis of 26S rDNA D1/D2 domains showed that PR NWS yeast population consists of the well-documented Kluyveromyces marxianus, as well as of other species (Saccharomyces cerevisiae, Wickerhamiella pararugosa, and Torulaspora delbrueckii), with multiple biotypes scored within each species as demonstrated by (GTG)5-based MSP-PCR. Haploid and diploid K. marxianus strains were identified through MAT genotyping, while thermotolerance assay allowed the selection of strains suitable to grow up to 48â—¦C. In whey fermentation trials, one thermotolerant strain was suitable to release ethanol with a fermentation efficiency of 86.5%, while another candidate was able to produce the highest amounts of both ethanol and bioactive peptides with potentially anti-hypertensive function. The present work demonstrated that PR NWS is a reservoir of ethanol and bioactive peptides producer yeasts, which can be exploited to valorize whey, in agreement with the principles of circularity and sustainability

    Sour Beer as Bioreservoir of Novel Craft Ale Yeast Cultures

    Get PDF
    : The increasing demand for craft beer is driving the search for novel ale yeast cultures from brewing-related wild environments. The focus of bioprospecting for craft cultures is to identify feral yeasts suitable to imprint unique sensorial attributes onto the final product. Here, we integrated phylogenetic, genotypic, genetic, and metabolomic techniques to demonstrate that sour beer during aging in wooden barrels is a source of suitable craft ale yeast candidates. In contrast to the traditional lambic beer maturation phase, during the aging of sour-matured production-style beer, different biotypes of Saccharomyces cerevisiae dominated the cultivable in-house mycobiota, which were followed by Pichia membranifaciens, Brettanomyces bruxellensis, and Brettanomyces anomalus. In addition, three putative S. cerevisiae × Saccharomyces uvarum hybrids were identified. S. cerevisiae feral strains sporulated, produced viable monosporic progenies, and had the STA1 gene downstream as a full-length promoter. During hopped wort fermentation, four S. cerevisiae strains and the S. cerevisiae × S. uvarum hybrid WY213 exceeded non-Saccharomyces strains in fermentative rate and ethanol production except for P. membranifaciens WY122. This strain consumed maltose after a long lag phase, in contrast to the phenotypic profile described for the species. According to the STA1+ genotype, S. cerevisiae partially consumed dextrin. Among the volatile organic compounds (VOCs) produced by S. cerevisiae and the S. cerevisiae × S. uvarum hybrid, phenylethyl alcohol, which has a fruit-like aroma, was the most prevalent. In conclusion, the strains characterized here have relevant brewing properties and are exploitable as indigenous craft beer starters
    • …
    corecore