222 research outputs found

    Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways.

    Get PDF
    Red wine polyphenolic compounds (RWPC) are reported to exert vasculoprotective properties on endothelial cells, involving nitric oxide (NO) release via a redox-sensitive pathway. This NO release involves the activation of the estrogen receptor-alpha (ERα). Paradoxical effects of a RWPC treatment occur in a rat model of post-ischemic neovascularization, where a low-dose is pro-angiogenic while a higher dose is anti-angiogenic. NO and ERα are key regulators of mitochondrial capacity, and angiogenesis is a highly energetic process associated with mitochondrial biogenesis. However, whether RWPC induces changes in mitochondrial capacity has never been addressed. We investigated the effects of RWPC at low (10(-4)g/l, LCP) and high concentration (10(-2)g/l, HCP) in human endothelial cells. Mitochondrial respiration, expression of mitochondrial biogenesis factors and mitochondrial DNA content were assessed using oxygraphy and quantitative PCR respectively. In vitro capillary formation using ECM gel(®) was also performed. Treatment with LCP increased mitochondrial respiration, with a maximal effect achieved at 48h. LCP also increased expression of several mitochondrial biogenesis factors and mitochondrial DNA content. In contrast, HCP did not affect these parameters. Furthermore, LCP modulated both mitochondrial capacity and angiogenesis through mechanisms sensitive to ER, NADPH oxidase and NO-synthase inhibitors. Finally, the inhibition of mitochondrial protein synthesis abolished the pro-angiogenic capacity of LCP. These results suggest a possible association between the modulation of mitochondrial capacity by LCP and its pro-angiogenic activity. These data provide evidence for a role of mitochondria in the regulation of angiogenesis by RWPC

    Role of the mitochondria on the paradoxical effect of red wine polyphenols on angiogenesis

    Get PDF
    Red wine polyphenol (RWPC) extracts has been reported to possess vasoprotective properties that involve nitric oxide (NO) release from endothelial cells via a redox- sensitive pathway. Besides, the molecular target of RWPC to release NO has been recently revealed and it involves the activation of the estrogen receptor alpha (ERα). Paradoxical effects of RWPC have been shown with regard to angiogenesis. Indeed in a rat model of postischemic neovascularization, low- dose is pro-  whereas high dose is anti- angiogenic. NO and ERα  are key regulators of mitochondrial function. Furthermore, angiogenesis is a highly energetic process associated with mitochondrial biogenesis. However, whether RWPC induces changes in mitochondrial function has never been addressed and it is the aim of this study. The effects of RWPC at low concentration (10- 4 g/l, LCP) and high concentration (10- 2 g/l, HCP) after 48 hours time exposure were investigated on human endothelial cells. Mitochondrial respiration, expression of biogenesis factors and DNA content was assessed using oxygraphy and qRT- PCR, respectively. In vitro capillary formation using Matrigel® was performed. The mechanism involved with respect to ER using the ER- antagonist fulvestrant was studied. The involvement of both NADPH oxidase and NO synthase was addressed using apocynin and L- NA respectively. LCP, but not HCP, increased mitochondrial respiration. The effect of LCP was associated with an increase of both expression of several mitochondrial biogenesis factors (NRF- 1, NRF- 2, ERRα, Tfam, PolG) and mitochondrial DNA content whereas HCP had no effect on these parameters. All the effects of LCP on mitochondrial respiration are prevented by fulvestrant, apocynin and L- NA. LCP also promoted in vitro capillary elongation that was prevented by fulvestrant, apocynin and L- NA. Finally, the inhibition of mitochondrial protein synthesis using chloramphenicol suppressed the pro- angiogenic property of LCP. The present study highlights the implication of the axis ER, NADPH oxidase and NOS pathways on both increase mitochondrial function and capillary elongation in response to RWPC at low concentration. They explain the paradoxical effect of RWPC depending on the concentration with respect to angiogenesis, mitochondria being key targets for its pro- angiogenic properties

    Effects of delphinidin on mitochondrial function in endothelial cells

    Get PDF
    Delphinidine (delph), an anthocyanin with the same pharmacological pro¿ le than the total extract of red wine polyphenol, induces vasodilatation and possess anti-apoptotic property in endothelial cells (ECs) by mechanism involving nitric oxide (NO). The later can regulate mitochondrial (mt) function. However, the link between NO, mitochondria and the upstream target of delph including the alpha isoform of the estrogen receptor (ERa) has never been assessed and is the aim of the present study. For this purpose, the effects of delph (3.10-5 M) and the ERa agonist propylpyrazole triol (PPT, 10-5 M) were conducted at two time points, 10min and 48h, on mt respiration (R) by oxygraphy and on respi- ratory chain complexes activities by spectrophotometry in Eahy926 ECs. NO production was assessed by electron paramagnetic resonance at the early time. These experiments were performed with or without the ER antagonist, fulves- trant (fulv, 3.10-5 M), or the NO synthase inhibitor, L-nitro-arginine (L-NA, 10-4 M). As expected, delph and PPT induced an early increase of NO that was prevented by fulv. Delph time-dependently increased basal R and maximal R capacity but not the non-phosphorylative R by a mechanism insensitive to fulv but sensitive to L-NA. PPT did not affect basal and non-phosphorylative R but increased the maximal R capacity by a mechanism sensitive to fulv and L-NA. These effects were associated with increased cytochrome c oxidase acti- vity. These data highlight the implication of both NO and cytochrome c oxidase activity on the modulation of mt R in response to delph and PPT in ECs. The lack of effect of ER blockade on the increase of mt R by delph supports the involvement of ER-independent mechanism although this receptor is implicated at the early increase of NO production. Thus, this study suggests a probable role of mitochondria in the effect of polyphenol in the regulation of endothelial func- tion including vasodilatation and endothelial integrity

    Energy and time resolution for a LYSO matrix prototype of the Mu2e experiment

    Full text link
    We have measured the performances of a LYSO crystal matrix prototype tested with electron and photon beams in the energy range 60-450 MeV. This study has been carried out to determine the achievable energy and time resolutions for the calorimeter of the Mu2e experiment.Comment: 2 pages, 3 figures, 13th Pisa Meeting on Advanced Detector

    Measurement of time resolution of the Mu2e LYSO calorimeter prototype

    Get PDF
    In this paper we present the time resolution measurements of the Lutetium–Yttrium Oxyorthosilicate (LYSO) calorimeter prototype for the Mu2e experiment. The measurements have been performed using the e− beam of the Beam Test Facility (BTF) in Frascati, Italy in the energy range from 100 to 400 MeV. The calorimeter prototype consisted of twenty five 30 x 30 x 130 mm^3, LYSO crystals read out by 10 × 10 mm^2 Hamamatsu Avalanche Photodiodes (APDs). The energy dependence of the measured time resolution can be parametrized as σ_t(E)=a/√E/GeV⊕b, with the stochastic and constant terms a=(51 ± 1)ps and b=(10 ± 4)ps, respectively. This corresponds to the time resolution of (162 ±4 )ps at 100 MeV

    Characterization of a prototype for the electromagnetic calorimeter of the Mu2e experiment

    Get PDF
    The Mu2e experiment at Fermilab searches the neutrinoless conversion of the muon into electron in the field of an Aluminum nucleus. The observation of this process would be a proof of the Charged Lepton Flavor Violation (CLFV). In case of no observation, the upper limit will be set to Rμe < 6×10−17 @ 90% CL, improving by a factor of 4 the previous best determination. The Mu2e detector apparatus consists of a straw tubes tracker that will measure the electrons momentum, and an electromagnetic calorimeter that provides a tracking-independent measurement of the electron energy, time and position. In this paper, we describe the baseline project of the EMC and present results in terms of performances and R&D

    Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation

    Get PDF
    Mitochondria have been shown to be impaired in insulin resistance-related diseases but have not been extensively studied during the first steps of adipose cell development. This study was designed to determine the sequence of changes of the mitochondrial network and function during the first days of adipogenesis. 3T3-L1 preadipocytes were differentiated into adipocytes without using glitazone compounds. At days 0, 3, 6, 9, and 12, mitochondrial network imaging, mitochondrial oxygen consumption, membrane potential, and oxidative phosphorylation efficiency were assessed in permeabilized cells. Gene and protein expressions related to fatty acid metabolism and mitochondrial network were also determined. Compared to preadipocytes (day 0), new adipocytes (days 6 and 9) displayed profound changes of their mitochondrial network that underwent fragmentation and redistribution around lipid droplets. Drp1 and mitofusin 2 displayed a progressive increase in their gene expression and protein content during the first 9 days of differentiation. In parallel with the mitochondrial network redistribution, mitochondria switched to uncoupled respiration with a tendency towards decreased membrane potential, with no variation of mtTFA and NRF1 gene expression. The expression of PGC1α and NRF2 genes and genes involved in lipid oxidation (UCP2, CD36, and CPT1) was increased. Reactive oxygen species (ROS) production displayed a nadir at day 6 with a concomitant increase in antioxidant enzyme gene expression. This 3T3-L1-based in vitro model of adipogenesis showed that mitochondria adapted to the increased number of lipid droplets by network redistribution and uncoupling respiration. The timing and regulation of lipid oxidation-associated ROS production appeared to play an important role in these changes
    corecore