13 research outputs found

    Association between tissue hypoxia and elevated non-protein sulphydryl concentrations in human cervical carcinoma xenografts

    Get PDF
    A double staining technique was developed for the simultaneous measurement of tissue hypoxia and the concentration of non-protein sulphydryls (NPSH), based on the fluorinated nitroimidazole EF5 and the fluorescent histochemical NPSH stain 1-(4-chloromercuriphenoylazo)-naphthol-2 (mercury orange). Cryostat sections of tumour tissue were examined by fluorescence image analysis, using a computer-controlled microscope stage to generate large tiled field images of the cut tumour surface. This method was applied to the human cervical squamous cell carcinoma lines ME180 and SiHa, grown as xenografts in severe combined immunodeficient (SCID) mice, in order to determine if there is a systematic relationship between tissue hypoxia and NPSH levels. Hypoxic regions of the tumours, defined by EF5 labelling, were found to show greater NPSH concentrations relative to better oxygenated regions. This is probably due to increases in glutathione, since the ME180 and SiHa xenografts contained low levels of cysteine and metallothionein; the other major cellular thiols that can bind to mercury orange. Because the effects of glutathione on radiation and chemotherapy resistance are likely to be greater under hypoxic conditions, these results have potentially important implications for the study of resistance mechanisms in solid tumours. © 1999 Cancer Research Campaig

    Differential Deployment of REST and CoREST Promotes Glial Subtype Specification and Oligodendrocyte Lineage Maturation

    Get PDF
    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation.We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes.Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the coupling of neurogenesis and gliogenesis and neuronal-glial interactions that underlie synaptic and neural network plasticity and homeostasis in health and in specific neurological disease states

    Panel 5: Immunology

    No full text
    Objective To perform a state-of-the-art review of the literature from January 2012 through May 2015 on studies that advanced our knowledge of the innate and adaptive immunology related to otitis media. This review also proposes future directions for research in this area. Data Sources PubMed database of the National Library of Medicine. Review Methods Three subpanels comprising experts in the field focused on sections relevant to cytokines, innate immunity, and adaptive immunity. The review focused on animal, cell line, and human studies and was critical in relation to the recommendations from the previous publication and for determination of the proposed goals and priorities. The panel met at the 18th International Symposium on Recent Advances in Otitis Media in June 2015 to consolidate its prior search results and discuss, plan, and refine the review. The panel approved the final draft. Conclusion From 2012 to 2014, tremendous progresses in immunology of otitis media were established-especially in the areas of innate immunity associated with the pathogenesis of otitis media. Implications for Practice The advances of the past 4 years formed the basis for a series of short- and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media, especially for recurrent otitis media
    corecore