3 research outputs found

    Transport of bound quasiparticle states in a two-dimensional boundary superfluid

    Get PDF
    The B phase of superfluid 3He can be cooled into the pure superfluid regime, where the thermal quasiparticle density is negligible. The bulk superfluid is surrounded by a quantum well at the boundaries of the container, confining a sea of quasiparticles with energies below that of those in the bulk. We can create a non-equilibrium distribution of these states within the quantum well and observe the dynamics of their motion indirectly. Here we show that the induced quasiparticle currents flow diffusively in the two-dimensional system. Combining this with a direct measurement of energy conservation, we conclude that the bulk superfluid 3He is effectively surrounded by an independent two-dimensional superfluid, which is isolated from the bulk superfluid but which readily interacts with mechanical probes. Our work shows that this two-dimensional quantum condensate and the dynamics of the surface bound states are experimentally accessible, opening the possibility of engineering two-dimensional quantum condensates of arbitrary topology

    Effect of the boundary condition on the Kapitza resistance between superfluid 3He-B and sintered metal

    Get PDF
    Understanding the temperature dependence of thermal boundary resistance, or Kapitza resistance, between liquid helium and sintered metal has posed a problem in low temperature physics for decades. In the ballistic regime of superfluid 3He-B, we find the Kapitza resistance can be described via scattering of thermal excitations (quasiparticles) with a macroscopic geometric area, rather than the sintered metal's microscopic area. We estimate that a quasiparticle needs on the order of 1000 collisions to successfully thermalize with the sinter. Finally, we find that the Kapitza resistance is approximately doubled with the addition of two mono-layers of solid 4He on the sinter surface, which we attribute to an extra magnetic channel of heat transfer being closed as the non-magnetic solid 4He replaces the magnetic solid 3He

    Transport of bound quasiparticle states in a two-dimensional boundary superfluid

    No full text
    Abstract The B phase of superfluid 3He can be cooled into the pure superfluid regime, where the thermal quasiparticle density is negligible. The bulk superfluid is surrounded by a quantum well at the boundaries of the container, confining a sea of quasiparticles with energies below that of those in the bulk. We can create a non-equilibrium distribution of these states within the quantum well and observe the dynamics of their motion indirectly. Here we show that the induced quasiparticle currents flow diffusively in the two-dimensional system. Combining this with a direct measurement of energy conservation, we conclude that the bulk superfluid 3He is effectively surrounded by an independent two-dimensional superfluid, which is isolated from the bulk superfluid but which readily interacts with mechanical probes. Our work shows that this two-dimensional quantum condensate and the dynamics of the surface bound states are experimentally accessible, opening the possibility of engineering two-dimensional quantum condensates of arbitrary topology
    corecore