1,158 research outputs found

    Silicon-based three-dimensional microstructures for radiation dosimetry in hadrontherapy

    Get PDF
    In this work, we propose a solid-state-detector for use in radiation microdosimetry. This device improves the performance of existing dosimeters using customized 3D-cylindrical microstructures etched inside silicon. The microdosimeter consists of an array of micro-sensors that have 3D-cylindrical electrodes of 15 μm diameter and a depth of 5 μm within a silicon membrane, resulting in a well-defined micrometric radiation sensitive volume. These microdetectors have been characterized using an 241Am source to assess their performance as radiation detectors in a high-LET environment. This letter demonstrates the capability of this microdetector to be used to measure dose and LET in hadrontherapy centers for treatment plan verification as part of their patient-specific quality control program

    Expert-Augmented Machine Learning

    Full text link
    Machine Learning is proving invaluable across disciplines. However, its success is often limited by the quality and quantity of available data, while its adoption by the level of trust that models afford users. Human vs. machine performance is commonly compared empirically to decide whether a certain task should be performed by a computer or an expert. In reality, the optimal learning strategy may involve combining the complementary strengths of man and machine. Here we present Expert-Augmented Machine Learning (EAML), an automated method that guides the extraction of expert knowledge and its integration into machine-learned models. We use a large dataset of intensive care patient data to predict mortality and show that we can extract expert knowledge using an online platform, help reveal hidden confounders, improve generalizability on a different population and learn using less data. EAML presents a novel framework for high performance and dependable machine learning in critical applications

    Recruiting medical groups for research: relationships, reputation, requirements, rewards, reciprocity, resolution, and respect

    Get PDF
    BACKGROUND: In order to conduct good implementation science research, it will be necessary to recruit and obtain good cooperation and comprehensive information from complete medical practice organizations. The goal of this paper is to report an effective example of such a recruitment effort for a study of the organizational aspects of depression care quality. METHODS: There were 41 medical groups in the Minnesota region that were eligible for participation in the study because they had sufficient numbers of patients with depression. We documented the steps required to both recruit their participation in this study and obtain their completion of two questionnaire surveys and two telephone interviews. RESULTS: All 41 medical groups agreed to participate and consented to our use of confidential data about their care quality. In addition, all 82 medical directors and quality improvement coordinators completed the necessary questionnaires and interviews. The key factors explaining this success can be summarized as the seven R's: Relationships, Reputation, Requirements, Rewards, Reciprocity, Resolution, and Respect. CONCLUSION: While all studies will not have all of these factors in such good alignment, attention to them may be important to other efforts to add to our knowledge of implementation science

    Support varieties for selfinjective algebras

    Full text link
    Support varieties for any finite dimensional algebra over a field were introduced by Snashall-Solberg using graded subalgebras of the Hochschild cohomology. We mainly study these varieties for selfinjective algebras under appropriate finite generation hypotheses. Then many of the standard results from the theory of support varieties for finite groups generalize to this situation. In particular, the complexity of the module equals the dimension of its corresponding variety, all closed homogeneous varieties occur as the variety of some module, the variety of an indecomposable module is connected, periodic modules are lines and for symmetric algebras a generalization of Webb's theorem is true

    Developing autonomous learning in first year university students using perspectives from positive psychology

    Get PDF
    Autonomous learning is a commonly occurring learning outcome from university study, and it is argued that students require confidence in their own abilities to achieve this. Using approaches from positive psychology, this study aimed to develop confidence in first‐year university students to facilitate autonomous learning. Psychological character strengths were assessed in 214 students on day one at university. Two weeks later their top three strengths were given to them in study skills modules as part of a psycho‐educational intervention designed to increase their self‐efficacy and self‐esteem. The impact of the intervention was assessed against a control group of 40 students who had not received the intervention. The results suggested that students were more confident after the intervention, and that levels of autonomous learning increased significantly compared to the controls. Character strengths were found to be associated with self‐efficacy, self‐esteem and autonomous learning in ways that were theoretically meaningful
    corecore