3 research outputs found

    Complementary Effects of Coenzyme Q10 and Lepidium Sativum Supplementation on the Reproductive Function of Mice: an Experimental Study

    Full text link
    Background: Coenzyme Q10 (CoQ10) and Lepidium sativum (LS) have therapeutic effects on infertility. Objective: To evaluate the combined effects of LS and CoQ10 on reproductive function in adult male NMRI mice. Materials and Methods: Eighty three-months-old male mice (35–40 gr) were divided into four groups (n = 10/each): control (treated with water), CoQ10-treated (200, 300, and 400 mg/kg/body weight), LS-treated (200, 400, 600 mg/kg/body weight), and co-treated (LS [600 mg/kg/body weight] + CoQ10 [200 mg/kg/body weight]) groups. Serum testosterone, luteinizing hormone, follicle-stimulating hormone, and gonadotropin realizing hormone (GnRH) levels were measured using ELISA method. The sperm quality was assessed using Sperm Class Analyzer® (SCA) CASA system and GnRH mRNA expression levels were evaluated by real-time polymerase chain reaction. Results: The number of sniffing and following behavior was significantly higher in LStreated (400 and 600 mg/ml/body weight) groups than the control group (p = 0.0007 and p = 0.0010, respectively). The number of mounting and coupling behaviors was significantly higher in the CoQ10 (300 and 400 mg/ml/body weight)-treated animals than the control group (p = 0.0170 and p = 0.0006, respectively). Co-treatment of CoQ10 (200 mg/ml/body weight) and LS (600 mg/ml/body weight) significantly increased all aspects of sexual behaviors as well as the levels of serum testosterone (p = 0.0011), luteinizing hormone (p = 0.0062), and follicle-stimulating hormone (p = 0.0001); sperm viability (p = 0.0300) and motility (p = 0.0010); and GnRH mRNA levels (p = 0.0016) compared to the control group. Conclusion: The coadministration of CoQ10 and LS significantly improves the activity of the hypothalamic-pituitary-gonadal axis and enhances the reproductive parameters in adult male mice. Key words: Lepidium sativum, Coenzyme Q10, Infertility, Male reproductive function

    αCaMKII Autophosphorylation Controls the Establishment of Alcohol Drinking Behavior

    No full text
    The α-Ca(2+)/calmodulin-dependent protein kinase II (αCaMKII) is a crucial enzyme controlling plasticity in the brain. The autophosphorylation of αCaMKII works as a ‘molecular memory' for a transient calcium activation, thereby accelerating learning. We investigated the role of αCaMKII autophosphorylation in the establishment of alcohol drinking as an addiction-related behavior in mice. We found that alcohol drinking was initially diminished in αCaMKII autophosphorylation-deficient αCaMKII(T286A) mice, but could be established at wild-type level after repeated withdrawals. The locomotor activating effects of a low-dose alcohol (2 g/kg) were absent in αCaMKII(T286A) mice, whereas the sedating effects of high-dose (3.5 g/kg) were preserved after acute and subchronic administration. The in vivo microdialysis revealed that αCaMKII(T286A) mice showed no dopamine (DA) response in the nucleus accumbens to acute or subchronic alcohol administration, but enhanced serotonin (5-HT) responses in the prefrontal cortex. The attenuated DA response in αCaMKII(T286A) mice was in line with altered c-Fos activation in the ventral tegmental area after acute and subchronic alcohol administration. In order to compare findings in mice with the human condition, we tested 23 single-nucleotide polymorphisms (SNPs) in the CAMK2A gene for their association with alcohol dependence in a population of 1333 male patients with severe alcohol dependence and 939 controls. We found seven significant associations between CAMK2A SNPs and alcohol dependence, one of which in an autophosphorylation-related area of the gene. Together, our data suggest αCaMKII autophosphorylation as a facilitating mechanism in the establishment of alcohol drinking behavior with changing the DA–5-HT balance as a putative mechanism
    corecore