34 research outputs found

    Tracking planar orientations of active MRI needles

    Get PDF
    Purpose: To determine and track the planar orientation of active interventional devices without using localizing RF microcoils. Materials and Methods: An image-based tracking method that determines a device's orientation using projection images was developed. An automated and a manual detection scheme were implemented. The method was demonstrated in an in vivo mesocaval puncture procedure in swine, which required accurate orientation of an active transvascular needle catheter. Results: The plane of the catheter was determined using two projection images. The scan plane was adjusted automatically to follow the catheter plane, and its orientation with respect to a previously acquired target plane was displayed. The algorithm facilitated navigation for a fast and accurate puncture. Conclusion: Using image-based techniques, with no mechanical design changes, the orientation of an active intravascular probe could be tracked. © 2007 Wiley-Liss, Inc

    Collagen fibers mediate MRI-detected water diffusion and anisotropy in breast cancers

    Get PDF
    AbstractCollagen 1 (Col1) fibers play an important role in tumor interstitial macromolecular transport and cancer cell dissemination. Our goal was to understand the influence of Col1 fibers on water diffusion, and to examine the potential of using noninvasive diffusion tensor imaging (DTI) to indirectly detect Col1 fibers in breast lesions. We previously observed, in human MDA-MB-231 breast cancer xenografts engineered to fluoresce under hypoxia, relatively low amounts of Col1 fibers in fluorescent hypoxic regions. These xenograft tumors together with human breast cancer samples were used here to investigate the relationship between Col1 fibers, water diffusion and anisotropy, and hypoxia. Hypoxic low Col1 fiber containing regions showed decreased apparent diffusion coefficient (ADC) and fractional anisotropy (FA) compared to normoxic high Col1 fiber containing regions. Necrotic high Col1 fiber containing regions showed increased ADC with decreased FA values compared to normoxic viable high Col1 fiber regions that had increased ADC with increased FA values. A good agreement of ADC and FA patterns was observed between in vivo and ex vivo images. In human breast cancer specimens, ADC and FA decreased in low Col1 containing regions. Our data suggest that a decrease in ADC and FA values observed within a lesion could predict hypoxia, and a pattern of high ADC with low FA values could predict necrosis. Collectively the data identify the role of Col1 fibers in directed water movement and support expanding the evaluation of DTI parameters as surrogates for Col1 fiber patterns associated with specific tumor microenvironments as companion diagnostics and for staging

    The graphics demands of virtual medicine

    No full text
    10.1016/0097-8493(95)00093-3Computers and Graphics (Pergamon)20161-68COGR

    Vascular Differences Detected by MRI for Metastatic Versus Nonmetastatic Breast and Prostate Cancer Xenografts

    Get PDF
    Several studies have linked vascular density, identified in histologic sections, to “metastatic risk.” Functional information of the vasculature, not readily available from histologic sections, can be obtained with contrast-enhanced MRI to exploit for therapy or metastasis prevention. Our aims were to determine if human breast and prostate cancer xenografts preselected for differences in invasive and metastatic characteristics established correspondingly different vascular volume and permeability, quantified here with noninvasive MRI of the intravascular contrast agent albumin-GdDTPA. Tumor vascular volume and permeability of human breast and prostate cancer xenografts were characterized using MRI. Parallel studies confirmed the invasive behavior of these cell lines. Vascular endothelial growth factor (VEGF) expression in the cell lines was measured using ELISA and Western blots. Metastasis to the lungs was evaluated with spontaneous as well as experimental assay. Metastatic tumors formed vasculature with significantly higher permeability or vascular volume (P<.05, two-sided unpaired t test). The permeability profile matched VEGF expression. Within tumors, regions of high vascular volume usually exhibited low permeability whereas regions of low vascular volume exhibited high permeability. We observed that although invasion was necessary, without adequate vascularization it was not sufficient for metastasis to occur

    Interactive visualization for rapid noninvasive cardiac assessment

    No full text
    10.1109/2.481466Computer29155-61CPTR

    Volume-targeted and whole-heart coronary magnetic resonance angiography using an intravascular contrast agent.

    No full text
    PURPOSE: To compare volume-targeted and whole-heart coronary magnetic resonance angiography (MRA) after the administration of an intravascular contrast agent. MATERIALS AND METHODS: Six healthy adult subjects underwent a navigator-gated and -corrected (NAV) free breathing volume-targeted cardiac-triggered inversion recovery (IR) 3D steady-state free precession (SSFP) coronary MRA sequence (t-CMRA) (spatial resolution = 1 x 1 x 3 mm(3)) and high spatial resolution IR 3D SSFP whole-heart coronary MRA (WH-CMRA) (spatial resolution = 1 x 1 x 2 mm(3)) after the administration of an intravascular contrast agent B-22956. Subjective and objective image quality parameters including maximal visible vessel length, vessel sharpness, and visibility of coronary side branches were evaluated for both t-CMRA and WH-CMRA. RESULTS: No significant differences (P = NS) in image quality were observed between contrast-enhanced t-CMRA and WH-CMRA. However, using an intravascular contrast agent, significantly longer vessel segments were measured on WH-CMRA vs. t-CMRA (right coronary artery [RCA] 13.5 +/- 0.7 cm vs. 12.5 +/- 0.2 cm; P &lt; 0.05; and left circumflex coronary artery [LCX] 11.9 +/- 2.2 cm vs. 6.9 +/- 2.4 cm; P &lt; 0.05). Significantly more side branches (13.3 +/- 1.2 vs. 8.7 +/- 1.2; P &lt; 0.05) were visible for the left anterior descending coronary artery (LAD) on WH-CMRA vs. t-CMRA. Scanning time and navigator efficiency were similar for both techniques (t-CMRA: 6.05 min; 49% vs. WH-CMRA: 5.51 min; 54%, both P = NS). CONCLUSION: Both WH-CMRA and t-CMRA using SSFP are useful techniques for coronary MRA after the injection of an intravascular blood-pool agent. However, the vessel conspicuity for high spatial resolution WH-CMRA is not inferior to t-CMRA, while visible vessel length and the number of visible smaller-diameter vessels and side-branches are improved

    Extracellular Acidification Alters Lysosomal Trafficking in Human Breast Cancer Cells

    Get PDF
    Cancer cells invade by secreting degradative enzymes, which are sequestered in lysosomal vesicles. In this study, the impact of an acidic extracellular environment on lysosome size, number, and distance from the nucleus in human mammary epithelial cells (HMECs) and breast cancer cells of different degrees of malignancy was characterized because the physiological microenvironment of tumors is frequently characterized by extracellular acidity. An acidic extracellular pH (pH(e)) resulted in a distinct shift of lysosomes from the perinuclear region to the cell periphery irrespective of the HMECs' degree of malignancy. With decreasing pH, larger lysosomal vesicles were observed more frequently in highly metastatic breast cancer cells, whereas smaller lysosomes were observed in poorly metastatic breast cancer cells and HMECs. The number of lysosomes decreased with acidic pH values. The displacement of lysosomes to the cell periphery driven by extracellular acidosis may facilitate exocytosis of these lysosomes and increase secretion of degradative enzymes. Filopodia formations, which were observed more frequently in highly metastatic breast cancer cells maintained at acidic pH(e), may also contribute to invasion

    Hypoxic Tumor Microenvironments Reduce Collagen I Fiber Density1

    No full text
    Although the mechanisms through which hypoxia influences several phenotypic characteristics such as angiogenesis, selection for resistance to apoptosis, resistance to radiation and chemotherapy, and increased invasion and metastasis are well characterized, the relationship between tumor hypoxia and components of the extracellular matrix (ECM) is relatively unexplored. The collagen I (Col1) fiber matrix of solid tumors is the major structural part of the ECM. Col1 fiber density can increase tumor initiation, progression, and metastasis, with cancer cell invasion occurring along radially aligned Col1 fibers. Here we have investigated the influence of hypoxia on Col1 fiber density in solid breast and prostate tumor models. Second harmonic generation (SHG) microscopy was used to detect differences in Col1 fiber density and volume between hypoxic and normoxic tumor regions. Hypoxic regions were detected by fluorescence microscopy, using tumors derived from human breast and prostate cancer cell lines stably expressing enhanced green fluorescent protein (EGFP) under transcriptional control of the hypoxia response element. In-house fiber analysis software was used to quantitatively analyze Col1 fiber density and volume from the SHG microscopy images. Normoxic tumor regions exhibited a dense mesh of Col1 fibers. In contrast, fewer and structurally altered Col1 fibers were detected in hypoxic EGFP-expressing tumor regions. Microarray gene expression analyses identified increased expression of lysyl oxidase and reduced expression of some matrix metalloproteases in hypoxic compared with normoxic cancer cells. These results suggest that hypoxia mediates Col1 fiber restructuring in tumors, which may impact delivery of macromolecular agents as well as dissemination of cells

    Hypoxia regulates CD44 and its variant isoforms through HIF-1α in triple negative breast cancer.

    Get PDF
    The CD44 transmembrane glycoproteins play multifaceted roles in tumor progression and metastasis. CD44 expression has also been associated with stem-like breast cancer cells. Hypoxia commonly occurs in tumors and is a major cause of radiation and chemo-resistance. Hypoxia is known to inhibit differentiation and facilitates invasion and metastasis. Here we have investigated the effect of hypoxia on CD44 and two of its isoforms in MDA-MB-231 and SUM-149 triple negative human breast cancer cells and MDA-MB-231 tumors using imaging and molecular characterization.The roles of hypoxia and hypoxia inducible factor (HIF) in regulating the expression of CD44 and its variant isoforms (CD44v6, CD44v7/8) were investigated in human breast cancer cells, by quantitative real-time polymerase chain reaction (qRT-PCR) to determine mRNA levels, and fluorescence associated cell sorting (FACS) to determine cell surface expression of CD44, under normoxic and hypoxic conditions. In vivo imaging studies with tumor xenografts derived from MDA-MD-231 cells engineered to express tdTomato red fluorescence protein under regulation of hypoxia response elements identified co-localization between hypoxic fluorescent regions and increased concentration of (125)I-radiolabeled CD44 antibody.Our data identified HIF-1α as a regulator of CD44 that increased the number of CD44 molecules and the percentage of CD44 positive cells expressing variant exons v6 and v7/8 in breast cancer cells under hypoxic conditions. Data from these cell studies were further supported by in vivo observations that hypoxic tumor regions contained cells with a higher concentration of CD44 expression
    corecore