41 research outputs found

    Development of a Combined Quantity and Quality Model for Optimal Management of Unsteady Groundwater Flow Fields

    Get PDF
    Presented are alternative techniques for including conservative solute transport within computer models for optimizing groundwater extraction rates. Unsteady two-dimensional flow and dispersed conservative solute transport are assumed. Comparisons are made of the practicality of including modified forms of implicit and explicit finite difference solute transport equations within optimization models. These equations can be calibrated and subsequently used within a MODCON procedure. The MODCON modelling procedure consists of an integrated series of five optimization or simulation modules. The procedure is applicable for either an entire aquifer system or for a subsystem of a larger system. The first module, A, computes physically feasible recharge rates across the boundaries of the modelled subsystem. Module B computes optimal extraction rates without considering groundwater quality. Module C uses method of characteristics simulation to compute solute transport that would result from implementing the pumping strategy of model B. Module D uses linear goal programming and nonlinear solute transport equations to calibrate linear coefficients. It attempts to duplicate the solute transport predicted by module C. Calibration is performed because coarsely discretized implicit or explicit solute transport equations may not be as accurate as the method of characteristics. Module E includes appropriate calibrated equations of module D as well as the flow equations of module B. It computes an optimal pumping (extraction or recharge) strategy that can satisfy future groundwater contaminant concentration criteria. Testing of the validity of this optimal pumping strategy is subsequently accomplished using module C. If necessary, one may cycle through modules C, D and E until convergence is obtained--until concentrations resulting from implementing the strategy of E are demonstrated to be acceptable

    Development of a Combined Quanity and Quality Model for Optimal Groundwater Management

    Get PDF
    Presented is a procedure for incorporating solute transport as linear constraints within computer models for optimizing regional groundwater extraction strategies. The MODCON modelling procedure uses linear goal programming, embedded linearized equations for flow and solute transport and a MOC simulation model. Assumed is 2D flow and solute transport and a dispersed conservative contaminant. The MODCON procedure develops steady groundwater extraction strategies that will satisfy future groundwater quality constraints while simultaneously causing future piezometric heads to be as close to current heads as possible. The procedure is applied to a 160 square mile area in southeastern Arkansas

    Development of linear water quality constraints for optimal groundwater management

    Get PDF
    Proposed is a procedure for incorporating solute transport as linear constraints within computer models for optimizing regional groundwater extraction strategies. . MODCON procedure uses linear goal programming. embedded linearized equations for flow and solute transport. and MOC simulation model. Assumed is 20 flow and solute transport. and a dispersed conservative contaminant

    Development of a combined quantity and quality model for optimal unsteady groundwater management

    Get PDF
    Presented is a procedure for incorporating solute transport as linear constraints within computer models for optimizing regional groundwater extraction strategies. The MODCON modelling procedure uses linear goal programming, embedded linearized equations for flow and solute transport and a MOC simulation model. Assumed is 20 flow and solute transport and a dispersed conservative contaminant. The MODCON procedure develops steady groundwater extraction strategies that will satisfy future groundwater quality constraints while simultaneously causing future piezometric heads to be as close to current heads as possible. The procedure is applied to a 160 square mile area in southeastern Arkansas

    Development of optimal sustained yield groundwater withdrawal strategies for the Boeuf‑Tensas basin in Arkansas

    Get PDF
    The goal of this study ia to develop sustained yield pumping (discharge via wells) strategies for the Boeuf-Tensaa Basin area. The demarkation of the Boeut-Tensas area is described in the Arkansas State Vater Plan (Arkansas Soil and Water Conservation Commission. 1984). The Boeuf-Teneas Basin ia a highly developed agricultural region located in the southeast corner of Arkansas. Hydrogeologically. it is part of the Bayou Bartholomew/Alluvial Aquifer System (Broom and Reed. 1973). Before describing the Boeuf-Tensas Basin, the Bayou Bartholomew region should be discussed

    Development of a Combined Quantity and Quality Model for Optimal Unsteady Groundwater Management

    Get PDF
    Presented are alternative techniques for including conservative solute transport within computer models for optimizing groundwater extraction rates. Unsteady two-dimensional flow and dispersed conservative solute transport are assumed. Comparisons are made of the practicality of including modified forms of implicit and explicit finite difference solute transport equations within optimization models. These equations can be calibrated and subsequently used within a MODCON procedure. The MODCON modelling procedure consists of an integrated series of five optimization or simulation modules. The procedure is applicable for either an entire aquifer system or for a subsystem of a larger system. The first module, A, computes physically feasible recharge rates across the boundaries of the modeled subsystem. Module B computes optimal extraction rates without considering groundwater quality. Module C uses method of characteristics simulation to compute solute transport that would result from implementing the pumping strategy of model B. Module D uses linear goal programming and nonlinear solute transport equations to calibrate linear coefficients. It attempts to duplicate the solute transport predicted by module C. Calibration is performed because coarsely discretized implicit or explicit solute transport equations may not be as accurate as the method of characteristics. Module E includes appropriate calibrated equations of module D as well as the flow equations of module B. It computes an optimal pumping (extraction or recharge) strategy that can satisfy future groundwater contaminant concentration criteria. Testing of the validity of this optimal pumping strategy is subsequently accomplished using module C. If necessary, one may cycle through modules C, D and E until convergence is obtained--until concentrations resulting from implementing the strategy of E are demonstrated to be acceptable

    Optimal Dispersed Ground-Water Contaminant Management: MODCON Method

    No full text
    A presented methodology and model compute optimal ground-water use strategies that approximate optimality for water supply, while achieving desired ground-water quality goals. This MODCON approach utilizes a new goal programming-based modification of the advective transport equation. Applied to dispersed ground-water contamination, MODCON allows the accurate constraining of concentrations that will exist in selected locations as a result of optimal pumping. Constraint locations can be initially contaminated, and contaminated ground water can be extracted. MODCON is hierarchical in a sense because a volumetrically optimal strategy is first computed for a study area and then modified only as needed to achieve water-quality goals. In the process, a subsystem that includes the dispersed contamination is selected and discretized. Within this subsystem, transport is modeled with method of characteristics accuracy via modified advective transport equations. These equations are modified in a new approach using coefficients derived through goal programming and external simulation. Application to the Bayou Bartholomew Basin in Arkansas is shown
    corecore