7 research outputs found

    Análisis del promotor del gen del receptor de prosatglandina D2, PTGDR en pacientes con asma

    No full text
    [ES] Esta tesis presenta un análisis del promotor del gen del receptor del prosatglandina D2, PTGDR en pacientes con asma.[ES]This thesis presents an analysis of gene promoter prosatglandina D2 receptor, PTGDR in patients with asthma

    Polymorphisms in Human <i>IL4</i>, <i>IL10</i>, and <i>TNF</i> Genes Are Associated with an Increased Risk of Developing NSAID-Exacerbated Respiratory Disease

    No full text
    Background: The role of genetics in non-steroidal anti-inflammatory drugs (NSAID) exacerbated respiratory disease (NERD) is unclear, with different candidates involved, such as HLA genes, genes related to leukotriene synthesis, and cytokine genes. This study aimed to determine possible associations between 22 polymorphisms in 13 cytokine genes. Methods: We included 195 patients (85 with NERD and 110 with respiratory disease who tolerate NSAIDs) and 156 controls (non-atopic individuals without a history of asthma, nasal polyposis (NP), or NSAID hypersensitivity). Genotyping was performed by sequence-specific primer polymerase chain reaction (PCR-SSP). Amplicons were analyzed by horizontal gel electrophoresis in 2% agarose. Results: Significant differences in allele and genotype frequency distributions were found in TNF (rs1800629), IL4 (rs2243248 and rs2243250), and IL10 (rs1800896, rs1800871, and rs1800872) genes in patients with NSAID hypersensitivity. In all cases, the minor allele and the heterozygous genotype were more prevalent in NERD. An association of TNF rs1800629 SNP with respiratory disease in NSAID-tolerant patients was also found. Conclusions: Retrospectively recorded, we found strong associations of NERD with polymorphisms in IL4, IL10, and TNF genes, suggesting that these genes could be involved in the inflammatory mechanisms underlying NERD

    Spanish HTT gene study reveals haplotype and allelic diversity with possible implications for germline expansion dynamics in Huntington disease

    No full text
    We aimed to determine the genetic diversity and molecular characteristics of the Huntington disease (HD) gene (HTT) in Spain. We performed an extended haplotype and exon one deep sequencing analysis of the HTT gene in a nationwide cohort of population-based controls (n = 520) and families with symptomatic individuals referred for HD genetic testing. This group included 331 HD cases and 140 carriers of intermediate alleles. Clinical and family history data were obtained when available. Spanish normal alleles are enriched in C haplotypes (40.1%), while A1 (39.8%) and A2 (31.6%) prevail among intermediate and expanded alleles, respectively. Alleles ≥50 CAG repeats are primarily associated with haplotypes A2 (38.9%) and C (32%), which are also present in 50% and 21.4%, respectively, of HD families with large intergenerational expansions. Non-canonical variants of exon one sequence are less frequent, but much more diverse, in alleles of ≥27 CAG repeats. The deletion of CAACAG, one of the six rare variants not observed among smaller normal alleles, is associated with haplotype C and appears to correlate with larger intergenerational expansions and early onset of symptoms. Spanish HD haplotypes are characterised by a high genetic diversity, potentially admixed with other non-Caucasian populations, with a higher representation of A2 and C haplotypes than most European populations. Differences in haplotype distributions across the CAG length range support differential germline expansion dynamics, with A2 and C showing the largest intergenerational expansions. This haplotype-dependent germline instability may be driven by specific cis-elements, such as the CAACAG deletion
    corecore