4 research outputs found

    A compressive review about TaxolÂź : history and future challenges

    Get PDF
    ©2020. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Published, version of a Published Work that appeared in final form in Molecules. To access the final edited and published work see https://doi.org/10.3390/molecules25245986TaxolŸ, which is also known as paclitaxel, is a chemotherapeutic agent widely used to treat different cancers. Since the discovery of its antitumoral activity, TaxolŸ has been used to treat over one million patients, making it one of the most widely employed antitumoral drugs. TaxolŸ was the first microtubule targeting agent described in the literature, with its main mechanism of action consisting of the disruption of microtubule dynamics, thus inducing mitotic arrest and cell death. However, secondary mechanisms for achieving apoptosis have also been demonstrated. Despite its wide use, TaxolŸ has certain disadvantages. The main challenges facing TaxolŸ are the need to find an environmentally sustainable production method based on the use of microorganisms, increase its bioavailability without exerting adverse effects on the health of patients and minimize the resistance presented by a high percentage of cells treated with paclitaxel. This review details, in a succinct manner, the main aspects of this important drug, from its discovery to the present day. We highlight the main challenges that must be faced in the coming years, in order to increase the effectiveness of TaxolŸ as an anticancer agent

    Engineering protein production by rationally choosing a carbon and nitrogen source using E. coli BL21 acetate metabolism knockout strains.

    No full text
    ©2019. The authors. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the published version of a Published Work that appeared in final form in Microbial Cell Factories. To access the final edited and published work see https://doi.org/10.1186/s12934-019-1202-1Background: Escherichia coli (E. coli) is a bacteria that is widely employed in many industries for the production of high interest bio-products such as recombinant proteins. Nevertheless, the use of E. coli for recombinant protein production may entail some disadvantages such as acetate overfow. Acetate is accumulated under some culture conditions, involves a decrease in biomass and recombinant protein production, and its metabolism is related to protein lysine acetylation. Thereby, the carbon and nitrogen sources employed are relevant factors in cell host metabolism, and the study of the central metabolism of E. coli and its regulation is essential for optimizing the production of biomass and recombinant proteins. In this study, our aim was to fnd the most favourable conditions for carrying out recombinant protein production in E. coli BL21 using two diferent approaches, namely, manipulation of the culture media composition and the deletion of genes involved in acetate metabolism and NΔ-lysine acetylation. Results: We evaluated protein overexpression in E. coli BL21 wt and fve mutant strains involved in acetate metabolism (Δacs, ΔackA and Δpta) and lysine acetylation (ΔpatZ and ΔcobB) grown in minimal medium M9 (inorganic ammonium nitrogen source) and in complex TB7 medium (peptide-based nitrogen source) supplemented with glucose (PTS carbon source) or glycerol (non-PTS carbon source). We observed a dependence of recombinant protein production on acetate metabolism and the carbon and nitrogen source employed. The use of complex medium supplemented with glycerol as a carbon source entails an increase in protein production and an efcient use of resources, since is a sub-product of biodiesel synthesis. Furthermore, the deletion of the ackA gene results in a fvefold increase in protein production with respect to the wt strain and a reduction in acetate accumulation. Conclusion: The results showed that the use of diverse carbon and nitrogen sources and acetate metabolism knockout strains can redirect E. coli carbon fuxes to diferent pathways and afect the fnal yield of the recombinant protein bioprocess. Thereby, we obtained a fvefold increase in protein production and an efcient use of the resources employing the most suitable strain and culture conditions

    Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study

    No full text
    Background: Hereditary transthyretin-mediated amyloidosis is a rare, inherited, progressive disease caused by mutations in the transthyretin (TTR) gene. We assessed the safety and efficacy of long-term treatment with patisiran, an RNA interference therapeutic that inhibits TTR production, in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Methods: This multicentre, open-label extension (OLE) trial enrolled patients at 43 hospitals or clinical centres in 19 countries as of Sept 24, 2018. Patients were eligible if they had completed the phase 3 APOLLO or phase 2 OLE parent studies and tolerated the study drug. Eligible patients from APOLLO (patisiran and placebo groups) and the phase 2 OLE (patisiran group) studies enrolled in this global OLE trial and received patisiran 0·3 mg/kg by intravenous infusion every 3 weeks with plans to continue to do so for up to 5 years. Efficacy assessments included measures of polyneuropathy (modified Neuropathy Impairment Score +7 [mNIS+7]), quality of life, autonomic symptoms, nutritional status, disability, ambulation status, motor function, and cardiac stress, with analysis by study groups (APOLLO-placebo, APOLLO-patisiran, phase 2 OLE patisiran) based on allocation in the parent trial. The global OLE is ongoing with no new enrolment, and current findings are based on the interim analysis of the patients who had completed 12-month efficacy assessments as of the data cutoff. Safety analyses included all patients who received one or more dose of patisiran up to the data cutoff. This study is registered with ClinicalTrials.gov, NCT02510261. Findings: Between July 13, 2015, and Aug 21, 2017, of 212 eligible patients, 211 were enrolled: 137 patients from the APOLLO-patisiran group, 49 from the APOLLO-placebo group, and 25 from the phase 2 OLE patisiran group. At the data cutoff on Sept 24, 2018, 126 (92%) of 137 patients from the APOLLO-patisiran group, 38 (78%) of 49 from the APOLLO-placebo group, and 25 (100%) of 25 from the phase 2 OLE patisiran group had completed 12-month assessments. At 12 months, improvements in mNIS+7 with patisiran were sustained from parent study baseline with treatment in the global OLE (APOLLO-patisiran mean change –4·0, 95 % CI –7·7 to −0·3; phase 2 OLE patisiran –4·7, –11·9 to 2·4). Mean mNIS+7 score improved from global OLE enrolment in the APOLLO-placebo group (mean change from global OLE enrolment −1·4, 95% CI –6·2 to 3·5). Overall, 204 (97%) of 211 patients reported adverse events, 82 (39%) reported serious adverse events, and there were 23 (11%) deaths. Serious adverse events were more frequent in the APOLLO-placebo group (28 [57%] of 49) than in the APOLLO-patisiran (48 [35%] of 137) or phase 2 OLE patisiran (six [24%] of 25) groups. The most common treatment-related adverse event was mild or moderate infusion-related reactions. The frequency of deaths in the global OLE was higher in the APOLLO-placebo group (13 [27%] of 49), who had a higher disease burden than the APOLLO-patisiran (ten [7%] of 137) and phase 2 OLE patisiran (0 of 25) groups. Interpretation: In this interim 12-month analysis of the ongoing global OLE study, patisiran appeared to maintain efficacy with an acceptable safety profile in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Continued long-term follow-up will be important for the overall assessment of safety and efficacy with patisiran. Funding: Alnylam Pharmaceuticals

    Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study

    No full text
    © 2020 Elsevier Ltd. All rights reserved.Background: Hereditary transthyretin-mediated amyloidosis is a rare, inherited, progressive disease caused by mutations in the transthyretin (TTR) gene. We assessed the safety and efficacy of long-term treatment with patisiran, an RNA interference therapeutic that inhibits TTR production, in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Methods: This multicentre, open-label extension (OLE) trial enrolled patients at 43 hospitals or clinical centres in 19 countries as of Sept 24, 2018. Patients were eligible if they had completed the phase 3 APOLLO or phase 2 OLE parent studies and tolerated the study drug. Eligible patients from APOLLO (patisiran and placebo groups) and the phase 2 OLE (patisiran group) studies enrolled in this global OLE trial and received patisiran 0·3 mg/kg by intravenous infusion every 3 weeks with plans to continue to do so for up to 5 years. Efficacy assessments included measures of polyneuropathy (modified Neuropathy Impairment Score +7 [mNIS+7]), quality of life, autonomic symptoms, nutritional status, disability, ambulation status, motor function, and cardiac stress, with analysis by study groups (APOLLO-placebo, APOLLO-patisiran, phase 2 OLE patisiran) based on allocation in the parent trial. The global OLE is ongoing with no new enrolment, and current findings are based on the interim analysis of the patients who had completed 12-month efficacy assessments as of the data cutoff. Safety analyses included all patients who received one or more dose of patisiran up to the data cutoff. This study is registered with ClinicalTrials.gov, NCT02510261. Findings: Between July 13, 2015, and Aug 21, 2017, of 212 eligible patients, 211 were enrolled: 137 patients from the APOLLO-patisiran group, 49 from the APOLLO-placebo group, and 25 from the phase 2 OLE patisiran group. At the data cutoff on Sept 24, 2018, 126 (92%) of 137 patients from the APOLLO-patisiran group, 38 (78%) of 49 from the APOLLO-placebo group, and 25 (100%) of 25 from the phase 2 OLE patisiran group had completed 12-month assessments. At 12 months, improvements in mNIS+7 with patisiran were sustained from parent study baseline with treatment in the global OLE (APOLLO-patisiran mean change -4·0, 95 % CI -7·7 to -0·3; phase 2 OLE patisiran -4·7, -11·9 to 2·4). Mean mNIS+7 score improved from global OLE enrolment in the APOLLO-placebo group (mean change from global OLE enrolment -1·4, 95% CI -6·2 to 3·5). Overall, 204 (97%) of 211 patients reported adverse events, 82 (39%) reported serious adverse events, and there were 23 (11%) deaths. Serious adverse events were more frequent in the APOLLO-placebo group (28 [57%] of 49) than in the APOLLO-patisiran (48 [35%] of 137) or phase 2 OLE patisiran (six [24%] of 25) groups. The most common treatment-related adverse event was mild or moderate infusion-related reactions. The frequency of deaths in the global OLE was higher in the APOLLO-placebo group (13 [27%] of 49), who had a higher disease burden than the APOLLO-patisiran (ten [7%] of 137) and phase 2 OLE patisiran (0 of 25) groups. Interpretation: In this interim 12-month analysis of the ongoing global OLE study, patisiran appeared to maintain efficacy with an acceptable safety profile in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Continued long-term follow-up will be important for the overall assessment of safety and efficacy with patisiran.info:eu-repo/semantics/publishedVersio
    corecore