2 research outputs found

    Comparing laser speckle contrast imaging and indocyanine green angiography for assessment of parathyroid perfusion

    No full text
    Abstract Accurate intraoperative assessment of parathyroid blood flow is crucial to preserve function postoperatively. Indocyanine green (ICG) angiography has been successfully employed, however its conventional application has limitations. A label-free method overcomes these limitations, and laser speckle contrast imaging (LSCI) is one such method that can accurately detect and quantify differences in parathyroid perfusion. In this study, twenty-one patients undergoing thyroidectomy or parathyroidectomy were recruited to compare LSCI and ICG fluorescence intraoperatively. An experimental imaging device was used to image a total of 37 parathyroid glands. Scores of 0, 1 or 2 were assigned for ICG fluorescence by three observers based on perceived intensity: 0 for little to no fluorescence, 1 for moderate or patchy fluorescence, and 2 for strong fluorescence. Speckle contrast values were grouped according to these scores. Analyses of variance were performed to detect significant differences between groups. Lastly, ICG fluorescence intensity was calculated for each parathyroid gland and compared with speckle contrast in a linear regression. Results showed significant differences in speckle contrast between groups such that parathyroids with ICG score 0 had higher speckle contrast than those assigned ICG score 1, which in turn had higher speckle contrast than those assigned ICG score 2. This was further supported by a correlation coefficient of -0.81 between mean-normalized ICG fluorescence intensity and speckle contrast. This suggests that ICG angiography and LSCI detect similar differences in blood flow to parathyroid glands. Laser speckle contrast imaging shows promise as a label-free alternative that overcomes current limitations of ICG angiography for parathyroid assessment

    Educational Review: Intraoperative Parathyroid Fluorescence Detection Technology in Thyroid and Parathyroid Surgery

    No full text
    Background: Accurate parathyroid gland (PG) identification is a critical yet challenging component of cervical endocrine procedures. PGs possess strong near-infrared autofluorescence (NIRAF) compared with other tissues in the neck. This property has been harnessed by image- and probe-based near-infrared fluorescence detection systems, which have gained increasing popularity in clinical use for their ability to accurately aid in PG identification in a rapid, noninvasive, and cost-effective manner. All NIRAF technologies, however, cannot differentiate viable from devascularized PGs without the use of contrast enhancement. Here, we aim to provide an overview of the rapid evolution of these technologies and update the surgery community on the most recent advancements in the field. Methods: A PubMed literature review was performed using the key terms "parathyroid," "near-infrared," and "fluorescence." Recommendations regarding the use of these technologies in clinical practice were developed on the basis of the reviewed literature and in conjunction with expert surgeons' opinions. Results: The use of near-infrared fluorescence detection can be broadly categorized as (1) using parathyroid NIRAF to identify both healthy and diseased PGs, and (2) using contrast-enhanced (i.e., indocyanine green) near-infrared fluorescence to evaluate PG perfusion and viability. Each of these approaches possess unique advantages and disadvantages, and clinical trials are ongoing to better define their utility. Conclusions: Near-infrared fluorescence detection offers the opportunity to improve our collective ability to identify and preserve PGs intraoperatively. While additional work is needed to propel this technology further, we hope this review will be valuable to the practicing surgeon.</p
    corecore