63 research outputs found

    Synthetic Turing protocells: vesicle self-reproduction through symmetry-breaking instabilities

    Full text link
    The reproduction of a living cell requires a repeatable set of chemical events to be properly coordinated. Such events define a replication cycle, coupling the growth and shape change of the cell membrane with internal metabolic reactions. Although the logic of such process is determined by potentially simple physico-chemical laws, the modeling of a full, self-maintained cell cycle is not trivial. Here we present a novel approach to the problem which makes use of so called symmetry breaking instabilities as the engine of cell growth and division. It is shown that the process occurs as a consequence of the breaking of spatial symmetry and provides a reliable mechanism of vesicle growth and reproduction. Our model opens the possibility of a synthetic protocell lacking information but displaying self-reproduction under a very simple set of chemical reactions

    Red Queen Coevolution on Fitness Landscapes

    Full text link
    Species do not merely evolve, they also coevolve with other organisms. Coevolution is a major force driving interacting species to continuously evolve ex- ploring their fitness landscapes. Coevolution involves the coupling of species fit- ness landscapes, linking species genetic changes with their inter-specific ecological interactions. Here we first introduce the Red Queen hypothesis of evolution com- menting on some theoretical aspects and empirical evidences. As an introduction to the fitness landscape concept, we review key issues on evolution on simple and rugged fitness landscapes. Then we present key modeling examples of coevolution on different fitness landscapes at different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.). Springer Series in Emergence, Complexity, and Computation, 201

    Some asymptotic properties of duplication graphs

    Full text link
    Duplication graphs are graphs that grow by duplication of existing vertices, and are important models of biological networks, including protein-protein interaction networks and gene regulatory networks. Three models of graph growth are studied: pure duplication growth, and two two-parameter models in which duplication forms one element of the growth dynamics. A power-law degree distribution is found to emerge in all three models. However, the parameter space of the latter two models is characterized by a range of parameter values for which duplication is the predominant mechanism of graph growth. For parameter values that lie in this ``duplication-dominated'' regime, it is shown that the degree distribution either approaches zero asymptotically, or approaches a non-zero power-law degree distribution very slowly. In either case, the approach to the true asymptotic degree distribution is characterized by a dependence of the scaling exponent on properties of the initial degree distribution. It is therefore conjectured that duplication-dominated, scale-free networks may contain identifiable remnants of their early structure. This feature is inherited from the idealized model of pure duplication growth, for which the exact finite-size degree distribution is found and its asymptotic properties studied.Comment: 19 pages, including 3 figure

    Two-dimensional projections of an hypercube

    Get PDF
    We present a method to project a hypercube of arbitrary dimension on the plane, in such a way as to preserve, as well as possible, the distribution of distances between vertices. The method relies on a Montecarlo optimization procedure that minimizes the squared difference between distances in the plane and in the hypercube, appropriately weighted. The plane projections provide a convenient way of visualization for dynamical processes taking place on the hypercube.Comment: 4 pages, 3 figures, Revtex

    Local versus Global Knowledge in the Barabasi-Albert scale-free network model

    Full text link
    The scale-free model of Barabasi and Albert gave rise to a burst of activity in the field of complex networks. In this paper, we revisit one of the main assumptions of the model, the preferential attachment rule. We study a model in which the PA rule is applied to a neighborhood of newly created nodes and thus no global knowledge of the network is assumed. We numerically show that global properties of the BA model such as the connectivity distribution and the average shortest path length are quite robust when there is some degree of local knowledge. In contrast, other properties such as the clustering coefficient and degree-degree correlations differ and approach the values measured for real-world networks.Comment: Revtex format. Final version appeared in PR

    Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics

    Full text link
    We present a study by linear stability analysis and large-scale Monte Carlo simulations of a simple model of biological coevolution. Selection is provided through a reproduction probability that contains quenched, random interspecies interactions, while genetic variation is provided through a low mutation rate. Both selection and mutation act on individual organisms. Consistent with some current theories of macroevolutionary dynamics, the model displays intermittent, statistically self-similar behavior with punctuated equilibria. The probability density for the lifetimes of ecological communities is well approximated by a power law with exponent near -2, and the corresponding power spectral densities show 1/f noise (flicker noise) over several decades. The long-lived communities (quasi-steady states) consist of a relatively small number of mutualistically interacting species, and they are surrounded by a ``protection zone'' of closely related genotypes that have a very low probability of invading the resident community. The extent of the protection zone affects the stability of the community in a way analogous to the height of the free-energy barrier surrounding a metastable state in a physical system. Measures of biological diversity are on average stationary with no discernible trends, even over our very long simulation runs of approximately 3.4x10^7 generations.Comment: 20 pages RevTex. Minor revisions consistent with published versio

    Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations

    Get PDF
    We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow

    Universality in percolation of arbitrary Uncorrelated Nested Subgraphs

    Full text link
    The study of percolation in so-called {\em nested subgraphs} implies a generalization of the concept of percolation since the results are not linked to specific graph process. Here the behavior of such graphs at criticallity is studied for the case where the nesting operation is performed in an uncorrelated way. Specifically, I provide an analyitic derivation for the percolation inequality showing that the cluster size distribution under a generalized process of uncorrelated nesting at criticality follows a power law with universal exponent γ=3/2\gamma=3/2. The relevance of the result comes from the wide variety of processes responsible for the emergence of the giant component that fall within the category of nesting operations, whose outcome is a family of nested subgraphs.Comment: 5 pages, no figures. Mistakes found in early manuscript have been remove

    Infinite-Order Percolation and Giant Fluctuations in a Protein Interaction Network

    Full text link
    We investigate a model protein interaction network whose links represent interactions between individual proteins. This network evolves by the functional duplication of proteins, supplemented by random link addition to account for mutations. When link addition is dominant, an infinite-order percolation transition arises as a function of the addition rate. In the opposite limit of high duplication rate, the network exhibits giant structural fluctuations in different realizations. For biologically-relevant growth rates, the node degree distribution has an algebraic tail with a peculiar rate dependence for the associated exponent.Comment: 4 pages, 2 figures, 2 column revtex format, to be submitted to PRL 1; reference added and minor rewording of the first paragraph; Title change and major reorganization (but no result changes) in response to referee comments; to be published in PR

    Range-based attack on links in scale-free networks: are long-range links responsible for the small-world phenomenon?

    Full text link
    The small-world phenomenon in complex networks has been identified as being due to the presence of long-range links, i.e., links connecting nodes that would otherwise be separated by a long node-to-node distance. We find, surprisingly, that many scale-free networks are more sensitive to attacks on short-range than on long-range links. This result, besides its importance concerning network efficiency and/or security, has the striking implication that the small-world property of scale-free networks is mainly due to short-range links.Comment: 4 pages, 4 figures, Revtex, published versio
    corecore