1,334 research outputs found

    Turbine engine Hot Section Technology (HOST) project

    Get PDF
    The Hot Section Technology (HOST) Project is a NASA-sponsored endeavor to improve the durability of advanced gas turbine engines for commercial and military aircraft. Through improvements in the analytical models and life prediction systems, designs for future hot section components , the combustor and turbine, will be more accurately analyzed and will incorporate features required for longer life in the more hostile operating environment of high performance engines

    Philosophy and the Integrity of the Person: The Phenomenology of Robert Sokolowski

    Get PDF
    This chapter offers an overview of the philosophy of Robert S. Sokolowski with a focus on his account of what philosophy is, how philosophy arises out of pre-philosophical life, and how it is related back to pre-philosophical life. It also situates Sokolowsk’s achievements in articulating the relationship between Husserlian phenomenology and modern and pre-modern styles of philosophizing

    Extending the dynamic range of transcription factor action by translational regulation

    Full text link
    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other transcription factors. Intuitively, each mRNA molecule acts as an independent sensor of the TF concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this new scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression.Comment: 14 pages, 5 figure

    Large scale excitation of the ISM in NGC 1068

    Get PDF
    Researchers have shown that photoionization by the continuum of the hidden Seyfert I nucleus in NGC 1068 can have a significant effect on the ionization state and energetics of this disk's Interstellar Medium (ISM). Photoionization models with appropriate power law spectra can produce (NII) lambda lambda 6538, 6584/H alpha line ratios of 1.25 for ionization parameters Q approx. 10 (exp -12). However the data indicate large regions where the (NII)/H alpha ratio is 1 to 3. Since the abundances are known to be solar, there must be additional heating sources. Hardening of the incident radiation field by intervening absorption should be able to raise T sub e, thereby raising the (NII)/H alpha ratio. Heating with moderate efficiency by the intense starburst ring should also be a significant factor in raising the temperature of the ISM. The photoionization models with additional heating predict enhanced emission from other forbidden lines including (OII) lambda 3727 and (SII) lambda 6731

    AI-powered simulation-based inference of a genuinely spatial-stochastic model of early mouse embryogenesis

    Full text link
    Understanding how multicellular organisms reliably orchestrate cell-fate decisions is a central challenge in developmental biology. This is particularly intriguing in early mammalian development, where early cell-lineage differentiation arises from processes that initially appear cell-autonomous but later materialize reliably at the tissue level. In this study, we develop a multi-scale, spatial-stochastic simulator of mouse embryogenesis, focusing on inner-cell mass (ICM) differentiation in the blastocyst stage. Our model features biophysically realistic regulatory interactions and accounts for the innate stochasticity of the biological processes driving cell-fate decisions at the cellular scale. We advance event-driven simulation techniques to incorporate relevant tissue-scale phenomena and integrate them with Simulation-Based Inference (SBI), building on a recent AI-based parameter learning method: the Sequential Neural Posterior Estimation (SNPE) algorithm. Using this framework, we carry out a large-scale Bayesian inferential analysis and determine parameter sets that reproduce the experimentally observed system behavior. We elucidate how autocrine and paracrine feedbacks via the signaling protein FGF4 orchestrate the inherently stochastic expression of fate-specifying genes at the cellular level into reproducible ICM patterning at the tissue scale. This mechanism is remarkably independent of the system size. FGF4 not only ensures correct cell lineage ratios in the ICM, but also enhances its resilience to perturbations. Intriguingly, we find that high variability in intracellular initial conditions does not compromise, but rather can enhance the accuracy and precision of tissue-level dynamics. Our work provides a genuinely spatial-stochastic description of the biochemical processes driving ICM differentiation and the necessary conditions under which it can proceed robustly.Comment: 62 pages, 15 figures, 4 tables, enhancement of Introduction and Discussion section

    The dynamical equivalence of modified gravity revisited

    Full text link
    We revisit the dynamical equivalence between different representations of vacuum modified gravity models in view of Legendre transformations. The equivalence is discussed for both bulk and boundary space, by including in our analysis the relevant Gibbons-Hawking terms. In the f(R) case, the Legendre transformed action coincides with the usual Einstein frame one. We then re-express the R+f(G) action, where G is the Gauss-Bonnet term, as a second order theory with a new set of field variables, four tensor fields and one scalar and study its dynamics. For completeness, we also calculate the conformal transformation of the full Jordan frame R+f(G) action. All the appropriate Gibbons-Hawking terms are calculated explicitly.Comment: 17 pages; v3: Revised version. New comments added in Sections 3 & 5. New results added in Section 6. Version to appear in Class. Quantum Gravit

    A Tight Upper Bound on Mutual Information

    Full text link
    We derive a tight lower bound on equivocation (conditional entropy), or equivalently a tight upper bound on mutual information between a signal variable and channel outputs. The bound is in terms of the joint distribution of the signals and maximum a posteriori decodes (most probable signals given channel output). As part of our derivation, we describe the key properties of the distribution of signals, channel outputs and decodes, that minimizes equivocation and maximizes mutual information. This work addresses a problem in data analysis, where mutual information between signals and decodes is sometimes used to lower bound the mutual information between signals and channel outputs. Our result provides a corresponding upper bound.Comment: 6 pages, 3 figures; proof illustration adde

    Are stealth scalar fields stable?

    Full text link
    Non-gravitating (stealth) scalar fields associated with Minkowski space in scalar-tensor gravity are examined. Analytical solutions for both non-minimally coupled scalar field theory and for Brans-Dicke gravity are studied and their stability with respect to tensor perturbations is assessed using a covariant and gauge-invariant formalism developed for alternative gravity. For Brans-Dicke solutions, the stability with respect to homogeneous perturbations is also studied. There are regions of parameter space corresponding to stability and other regions corresponding to instability.Comment: 10 pages, 1 table, no figures, to appear in Phys. Rev,
    corecore