1,498 research outputs found

    Coupled phonon-ripplon modes in a single wire of electrons on the liquid-helium surface

    Full text link
    The coupled phonon-ripplon modes of the quasi-one-dimensional electron chain on the liquid helium sutface are studied. It is shown that the electron-ripplon coupling leads to the splitting of the collective modes of the wire with the appearance of low-frequency modes and high-frequency optical modes starting from threshold frequencies. The effective masses of an electron plus the associated dimple for low frequency modes are estimated and the values of the threshold frequencies are calculated. The results obtained can be used in experimental attempts to observe the phase transition of the electron wire into a quasi-ordered phase.Comment: 5 pages, 1 figure, Physical Review (in press

    Plasma dispersion of multisubband electron systems over liquid helium

    Full text link
    Density-density response functions are evaluated for nondegenerate multisubband electron systems in the random-phase approximation for arbitrary wave number and subband index. We consider both quasi-two-dimensional and quasi-one- dimensional systems for electrons confined to the surface of liquid helium. The dispersion relations of longitudinal intrasubband and transverse intersubband modes are calculated at low temperatures and for long wavelengths. We discuss the effects of screening and two-subband occupancy on the plasmon spectrum. The characteristic absorption edge of the intersubband modes is shifted relatively to the single-particle intersubband separation and the depolarization shift correction can be significant at high electron densities

    A quantum volume hologram

    Full text link
    We propose a new scheme for parallel spatially multimode quantum memory for light. The scheme is based on counter-propagating quantum signal wave and strong classical reference wave, like in a classical volume hologram, and therefore can be called a quantum volume hologram. The medium for the hologram consists of a spatially extended ensemble of atoms placed in a magnetic field. The write-in and read-out of this quantum hologram is as simple as that of its classical counterpart and consists of a single pass illumination. In addition we show that the present scheme for a quantum hologram is less sensitive to diffraction and therefore is capable of achieving higher density of storage of spatial modes as compared to previous proposals. A quantum hologram capable of storing entangled images can become an important ingredient in quantum information processing and quantum imaging.Comment: 8 pages, 2 figure

    Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary

    Get PDF
    AbstractThe effects of the adsorption of the fluorescent potential-sensitive dyes RH-421, RH-237 and RH-160 on the bilayer lipid membrane were studied. It was shown that a dipole potential drop, positive in the hydrophobic part of the membrane, arose due to the dye adsorption. The dye adsorption led to a considerable increase of the rate constant of hydrophobic anion translocation through the membrane, but did not affect their partition coefficient between membrane and water. It implies that the region of the membrane where the potential drops is located deeper than the adsorption plane of hydrophobic ions. The values of the boundary potential differences were estimated by two independent methods with unilateral and bilateral application of the dyes to lipid bilayer membranes. The results suggest that RH dye molecules penetrate through the lipid bilayers. The values of ζ-potential in liposomes did not change on dye adsorption. Hence, dye molecules are adsorbed in a form that does not change the surface charge. We estimated the effects of the electric field of dye dipole layer on an individual dipole located in the same layer and on ion transport through a membrane protein Na+/K+-ATPase. It turned out that the local electric field of each dye dipole decayed so rapidly that a neighbouring dye molecule did not feel it. It also appeared that RH dyes could have but a minor effect on the electrogenic transport performed by the sodium pump in the examined range of dye concentrations

    Decay rate of the excited surface electron states on liquid helium

    Get PDF
    The low temperature bound of the decay rate of the excited surface electron states on liquid helium is theoretically studied. It is shown that the lifetime and dephasing time of the surface electron states are strongly limited by spontaneous emission of couples of short-wavelength capillary wave quanta (ripplons). These two-ripplon scattering processes are of the second order in the nonlinear interaction Hamiltonian. In contrast to the usual one-ripplon scattering contribution, the decay rate found here cannot be substantially reduced neither by lowering temperature nor by external magnetic field, which is important for recently discussed implementation of quantum bits in such a system

    Quantum parallel dense coding of optical images

    Full text link
    We propose quantum dense coding protocol for optical images. This protocol extends the earlier proposed dense coding scheme for continuous variables [S.L.Braunstein and H.J.Kimble, Phys.Rev.A 61, 042302 (2000)] to an essentially multimode in space and time optical quantum communication channel. This new scheme allows, in particular, for parallel dense coding of non-stationary optical images. Similar to some other quantum dense coding protocols, our scheme exploits the possibility of sending a classical message through only one of the two entangled spatially-multimode beams, using the other one as a reference system. We evaluate the Shannon mutual information for our protocol and find that it is superior to the standard quantum limit. Finally, we show how to optimize the performance of our scheme as a function of the spatio-temporal parameters of the multimode entangled light and of the input images.Comment: 15 pages, 4 figures, RevTeX4. Submitted to the Special Issue on Quantum Imaging in Journal of Modern Optic

    Pseudo-epsilon expansion and the two-dimensional Ising model

    Full text link
    Starting from the five-loop renormalization-group expansions for the two-dimensional Euclidean scalar \phi^4 field theory (field-theoretical version of two-dimensional Ising model), pseudo-\epsilon expansions for the Wilson fixed point coordinate g*, critical exponents, and the sextic effective coupling constant g_6 are obtained. Pseudo-\epsilon expansions for g*, inverse susceptibility exponent \gamma, and g_6 are found to possess a remarkable property - higher-order terms in these expansions turn out to be so small that accurate enough numerical estimates can be obtained using simple Pade approximants, i. e. without addressing resummation procedures based upon the Borel transformation.Comment: 4 pages, 4 tables, few misprints avoide
    corecore