34 research outputs found

    Early results from ChanPLaNS: mystery of hard X-ray emitting CSPNe

    Get PDF
    We are presently using the Chandra X-ray Observatory to conduct the first systematic X-ray survey of planetary nebulae (PNe) in the solar neighborhood. The Chandra Planetary Nebula Survey (ChanPlaNS) is a 570 ks Chandra Cycle 12 Large Program targeting 21 high-excitation PNe within ∼1.5 kpc of Earth. When complete, this survey will provide a suite of new X-ray diagnostics that will inform the study of late stellar evolution, binary star astrophysics, and wind interactions. Among the early results of ChanPlaNS (when combined with archival Chandra data) is a surprisingly high detection rate of relatively hard X-ray emission from CSPNe. Specifically, X-ray point sources are clearly detected in roughly half of the ∼30 high-excitation PNe observed thus far by Chandra, and all but one of these X-ray-emitting CSPNe display evidence for a hard (few MK) component in their Chandra spectra. Only the central star of the Dumbbell appears to display 'pure' hot blackbody emission from a ∼200 kK hot white dwarf photosphere in the X-ray band. Potential explanations for the'excess' hard X-ray emission detected from the other CSPNe include late-type companions (heretofore undetected, in most cases) whose coronae have been rejuvenated by recent interactions with the mass-losing WD progenitor, non-LTE effects in hot white dwarf photospheres, self-shocking variable winds from the central star, and slow (re-)accretion of previously ejected red giant envelope mass. © 2012 International Astronomical Union.published_or_final_versio

    Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein Binds and Protects a Nuclear Noncoding RNA from Cellular RNA Decay Pathways

    Get PDF
    The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless β-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway

    Global mRNA Degradation during Lytic Gammaherpesvirus Infection Contributes to Establishment of Viral Latency

    Get PDF
    During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3′ end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment

    Guanine Ribonucleotide Metabolism and the Regulation of Myelopoiesis

    No full text
    corecore