319 research outputs found

    The equation of state for two-dimensional hard-sphere gases: Hard-sphere gases as ideal gases with multi-core boundaries

    Full text link
    The equation of state for a two-dimensional hard-sphere gas is difficult to calculate by usual methods. In this paper we develop an approach for calculating the equation of state of hard-sphere gases, both for two- and three-dimensional cases. By regarding a hard-sphere gas as an ideal gas confined in a container with a multi-core (excluded sphere) boundary, we treat the hard-sphere interaction in an interacting gas as the boundary effect on an ideal quantum gas; this enables us to treat an interacting gas as an ideal one. We calculate the equation of state for a three-dimensional hard-sphere gas with spin jj, and compare it with the results obtained by other methods. By this approach the equation of state for a two-dimensional hard-sphere gas can be calculated directly.Comment: 9 pages, 1 figur

    First Detection of the White-Dwarf Cooling Sequence of the Galactic Bulge

    Full text link
    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (3'x3'), together with three more Advanced Camera for Surveys and eight Wide Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for two years, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ~0.1 mas/yr (~4 km/s) at F606W~25.5 mag, and better than ~0.5 mas/yr (20 km/s) at F606W~28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD - main sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P < 1 d) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.Comment: 9 pages, 5 figures, accepted for publication on Ap

    Interference of Bose-Einstein condensates in momentum space

    Full text link
    We suggest an experiment to investigate the linear superposition of two spatially separated Bose-Einstein condensates. Due to the coherent combination of the two wave functions, the dynamic structure factor, measurable through inelastic photon scattering at high momentum transfer qq, is predicted to exhibit interference fringes with frequency period Δν=q/md\Delta\nu = q/md where dd is the distance between the condensates. We show that the coherent configuration corresponds to an eigenstate of the physical observable measured in the experiment and that the relative phase of the condensates is hence created through the measurement process.Comment: 4 pages and 2 eps figure

    Isotropic Spin Wave Theory of Short-Range Magnetic Order

    Full text link
    We present an isotropic spin wave (ISW) theory of short-range order in Heisenberg magnets, and apply it to square lattice S=1/2 and S=1 antiferromagnets. Our theory has three identical (isotropic) spin wave modes, whereas the conventional spin wave theory has two transverse and one longitudinal mode. We calculate temperature dependences of various thermodynamic observables analytically and find good (several per cent) agreement with independently obtained numerical results in a broad temperature range.Comment: 4 pages, REVTeX v3 with 3 embedded PostScript figure

    Anomalous finite size spectrum in the S=1/2 two dimensional Heisenberg model

    Full text link
    We study the low energy spectrum of the nearest neighbor Heisenberg model on a square lattice as a function of the total spin S. By quantum Monte Carlo simulation we compute this spectrum for the s=1/2, s=1 and s=3/2 Heisenberg models. We conclude that the nonlinear sigma model prediction for the low energy spectrum is always verified for large enough system size. However the crossover to the correct scaling regime is particularly slow just for the s=1/2 Heisenberg model. The possibility to detect this unexpected anomaly with finite temperature experiments on s=1/2 isotropic quantum antiferromagnets is also discussed.Comment: 4 pages, RevTeX + 5 encapsulated postscript figure

    Electron spectral function and algebraic spin liquid for the normal state of underdoped high TcT_c superconductors

    Full text link
    We propose to describe the spin fluctuations in the normal state of underdoped high TcT_{c} superconductors as a manifestation of an algebraic spin liquid. We have performed calculations within the slave-boson model to support our proposal. Under the spin-charge separation picture, the normal state (the spin-pseudogap phase) is described by massless Dirac fermions, charged bosons, and a gauge field. We find that the gauge interaction is a marginal perturbation and drives the mean-field free-spinon fixed point to a more complicated spin-quantum-fixed-point -- the algebraic spin liquid, where gapless excitations interact at low energies. The electron spectral function in the normal state was found to have a Luttinger-liquid-like line shape as observed in experiments. The spectral function obtained in the superconducting state shows how a coherent quasiparticle peak appears from the incoherent background as spin and charge recombine.Comment: 4 pages, 3 figures. published versio

    Time evolution of condensed state of interacting bosons with reduced number fluctuation in a leaky box

    Full text link
    We study the time evolution of the Bose-Einstein condensate of interacting bosons confined in a leaky box, when its number fluctuation is initially (t=0) suppressed. We take account of quantum fluctuations of all modes, including k = 0. We identify a ``natural coordinate'' b_0 of the interacting bosons, by which many physical properties can be simply described. Using b_0, we successfully define the cosine and sine operators for interacting many bosons. The wavefunction, which we call the ``number state of interacting bosons'' (NSIB), of the ground state that has a definite number N of interacting bosons can be represented simply as a number state of b_0. We evaluate the time evolution of the reduced density operator \rho(t) of the bosons in the box with a finite leakage flux J, in the early time stage for which Jt << N. It is shown that \rho(t) evolves from a single NSIB at t = 0, into a classical mixture of NSIBs of various values of N at t > 0. We define a new state called the ``number-phase squeezed state of interacting bosons'' (NPIB). It is shown that \rho(t) for t>0 can be rewritten as the phase-randomized mixture (PRM) of NPIBs. It is also shown that the off-diagonal long-range order (ODLRO) and the order parameter defined by it do not distinguish the NSIB and NPIB. On the other hand, the other order parameter \Psi, defined as the expectation value of the boson operator, has different values among these states. For each element of the PRM of NPIBs, we show that \Psi evolves from zero to a finite value very quickly. Namely, after the leakage of only two or three bosons, each element acquires a full, stable and definite (non-fluctuating) value of \Psi.Comment: 25 pages including 3 figures. To appear in Phys. Rev. A (1999). The title is changed to stress the time evolution. Sections II, III and IV of the previous manuscript have been combined into one section. The introduction and summary of the previous manuscript have been combined into the Introduction and Summary. The names and abbreviations of quantum states are changed to stress that they are for interacting many bosons. More references are cite

    Confinement of Spin and Charge in High-Temperature Superconductors

    Full text link
    By exploiting the internal gauge-invariance intrinsic to a spin-charge separated electron, we show that such degrees of freedom must be confined in two-dimensional superconductors experiencing strong inter-electron repulsion. We also demonstrate that incipient confinement in the normal state can prevent chiral spin-fluctuations from destroying the cross-over between strange and psuedo-gap regimes in under-doped high-temperature superconductors. Last, we suggest that the negative Hall anomaly observed in these materials is connected with this confinement effect.Comment: 12 pages, 1 postscript figure, to appear in PRB (RC), May 199

    Bragg spectroscopy of a Bose-Einstein condensate

    Full text link
    Properties of a Bose-Einstein condensate were studied by stimulated, two-photon Bragg scattering. The high momentum and energy resolution of this method allowed a spectroscopic measurement of the mean-field energy and of the intrinsic momentum uncertainty of the condensate. The coherence length of the condensate was shown to be equal to its size. Bragg spectroscopy can be used to determine the dynamic structure factor over a wide range of energy and momentum transfers.Comment: 4 pages, 3 figure
    • …
    corecore