2,677 research outputs found

    Anomalous Spin Dynamics in Doped Quantum Antiferromagnets

    Full text link
    Finite-temperature spin dynamics in planar t-J model is studied using the method based on the Lanczos diagonalization of small systems. Dynamical spin structure factor at moderate dopings shows the coexistence of free-fermion-like and spin-fluctuation timescales. At T<J, the low-frequency and static susceptibility show pronounced T dependence, supporting a scenario, related to the marginal Fermi-liquid one, for the explanation of neutron-scattering and NMR-relaxation experiments in cuprates. Calculated NMR relaxation rates reasonably reproduce experimental ones.Comment: 10 pages + 4 figures, Postscript in uuencoded compressed tar file, IJS-TP-94/2

    Spin Dependence of Correlations in Two-Dimensional Quantum Heisenberg Antiferromagnets

    Full text link
    We present a series expansion study of spin-S square-lattice Heisenberg antiferromagnets. The numerical data are in excellent agreement with recent neutron scattering measurements. Our key result is that the correlation length for S>1/2 strongly deviates from the exact T->0 (renormalized classical, or RC) scaling prediction for all experimentally and numerically accessible temperatures. We note basic trends with S of the experimental and series expansion correlation length data and propose a scaling crossover scenario to explain them.Comment: 5 pages, REVTeX file. PostScript file for the paper with embedded figures available via WWW at http://xxx.lanl.gov/ps/cond-mat/9503143

    Testing for Antiphospholipid Antibody (aPL) Specificities in Retrospective “Normal” Cerebral Spinal Fluid (CSF)

    Get PDF
    Antiphospholipid antibodies (aPL) have been found in the blood of patients with systemic and neurological disease. The rare reports of aPL in cerebral spinal fluid (CSF) have been limited mostly to IgG and IgM anticardiolipin (aCL). Our published finding of IgA aPE in the CSF of a young stroke victim prompted us to establish “normal” CSF aPL values for a panel of aPL, which included aCL, antiphosphatidylserine (aPS), antiphosphatidylethanolamine (aPE) and antiphosphatidylcholine (aPC). CSF samples were tested by ELISA for IgG, IgM and IgA aPL. In addition, the CSF samples were tested for activity in the presence and absence of phospholipid (PL) binding plasma-proteins. A total of 24 data points were obtained for each CSF sample.We tested 59 CSF samples obtained from 59 patients who were undergoing evaluation for systemic or neurologic diseases. All CSF samples had normal protein, glucose and cell counts. Ten of the 59 CSF samples (17%) had elevated aPL optical density (OD) values an order of magnitude higher than the other 49 CSF samples for one or more aPL specificity and/or isotype. One CSF sample had both PL-binding protein dependent and independent IgG aPE activity. Another CSF sample showed both IgG aPE and aPC reactivity. The remaining eight CSF samples showed single aPL findings; IgG aPE (5), IgG aPC (1), IgG aCL (1) and IgM aPC (1). Seven of 10 patients with elevated CSF values were females. As expected, most “normal” aPL OD values were substantially lower in CSF than those we have reported in blood samples from volunteer blood donors

    Layer- and bulk roton excitations of 4He in porous media

    Full text link
    We examine the energetics of bulk and layer-roton excitations of 4He in various porous medial such as aerogel, Geltech, or Vycor, in order to find out what conclusions can be drawn from experiments on the energetics about the physisorption mechanism. The energy of the layer-roton minimum depends sensitively on the substrate strength, thus providing a mechanism for a direct measurement of this quantity. On the other hand, bulk-like roton excitations are largely independent of the interaction between the medium and the helium atoms, but the dependence of their energy on the degree of filling reflects the internal structure of the matrix and can reveal features of 4He at negative pressures. While bulk-like rotons are very similar to their true bulk counterparts, the layer modes are not in close relation to two-dimensional rotons and should be regarded as a third, completely independent kind of excitation

    Finding the elusive and causative autoantibody: An atypical case of autoimmune hemolytic anemia

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111227/1/ccr3203.pd

    NMR relaxation in half-integer antiferromagnetic spin chains

    Full text link
    Nuclear relaxation in half-integer spin chains at low temperatures (T << J, the antiferromagnetic exchange constant) is dominated by dissipation from a gas of thermally-excited, overdamped, spinons. The universal low temperature dependence of the relaxation rates 1/T11/T_1 and 1/T2G1/T_{2G} is computed.Comment: 7 pages, 1 uuencoded postscript figure appende

    Quantum Disordered Regime and Spin Gap in the Cuprate Superconductors

    Full text link
    We discuss the crossover from the quantum critical, z ⁣= ⁣1z\!=\!1, to the quantum disordered regime in high-Tc_c materials in relation to the experimental data on the nuclear relaxation, bulk susceptibility, and inelastic neutron scattering. In our scenario, the spin excitations develop a gap Δ ⁣∼ ⁣1/ξ\Delta\!\sim\!1/\xi well above Tc_c, which is supplemented by the quasiparticle gap below Tc_c. The above experiments yield consistent estimates for the value of the spin gap, which increases as the correlation length decreases.Comment: 14 pages, REVTeX v3.0, PostScript file for 3 figures is attached, UIUC-P-93-07-06

    Modelling metal centres, acid sites and reaction mechanisms in microporous catalysts

    Get PDF
    We discuss the role of QM/MM (embedded cluster) computational techniques in catalytic science, in particular their application to microporous catalysis. We describe the methodologies employed and illustrate their utility by briefly summarising work on metal centres in zeolites. We then report a detailed investigation into the behaviour of methanol at acidic sites in zeolites H-ZSM-5 and H-Y in the context of the methanol-to-hydrocarbons/olefins process. Studying key initial steps of the reaction (the adsorption and subsequent methoxylation), we probe the effect of framework topology and Brønsted acid site location on the energetics of these initial processes. We find that although methoxylation is endothermic with respect to the adsorbed system (by 17–56 kJ mol−1 depending on the location), there are intriguing correlations between the adsorption/reaction energies and the geometries of the adsorbed species, of particular significance being the coordination of methyl hydrogens. These observations emphasise the importance of adsorbate coordination with the framework in zeolite catalysed conversions, and how this may vary with framework topology and site location, particularly suited to investigation by QM/MM technique
    • …
    corecore