1,944 research outputs found

    Is simultaneous yy and ξ\xi--scaling in the quasi-elastic region accidental?

    Full text link
    We study the yy and ξ\xi--scaling of the nuclear response at large momentum transfer in order to understand how scaling based on very different descriptions of the elementary interaction can occur simultaneously. We find that the approximate validity of ξ\xi-scaling at low energy loss arises from the coincidental behavior of the quasielastic and deep inelastic cross sections.Comment: 4 pages, 3 Postscript figure

    Direct mapping of the finite temperature phase diagram of strongly correlated quantum models

    Full text link
    Optical lattice experiments, with the unique potential of tuning interactions and density, have emerged as emulators of nontrivial theoretical models that are directly relevant for strongly correlated materials. However, so far the finite temperature phase diagram has not been mapped out for any strongly correlated quantum model. We propose a remarkable method for obtaining such a phase diagram for the first time directly from experiments using only the density profile in the trap as the input. We illustrate the procedure explicitly for the Bose Hubbard model, a textbook example of a quantum phase transition from a superfluid to a Mott insulator. Using "exact" quantum Monte Carlo simulations in a trap with up to 10610^6 bosons, we show that kinks in the local compressibility, arising from critical fluctuations, demarcate the boundaries between superfluid and normal phases in the trap. The temperature of the bosons in the optical lattice is determined from the density profile at the edge. Our method can be applied to other phase transitions even when reliable numerical results are not available.Comment: 12 pages, 5 figure

    Present state of power electronics circuitry and perspectives of its development

    Get PDF
    This paper is devoted mainly to the circuitry, because element base is a big independent issue. Let us say a few words about terminology. A modern converter can be rarely represented as a simple device like “rectifier”, “inverter” etc. It usually consists of the combination of several units, performing elementary functions. For such multistage units it makes sense to use a definition of converter “technology”, keeping in mind some actions with electric current for a certain purpose. It is similar to the step activities in chemistry: to take a substance, to heat it etc. After the formulation of a goal and a number of necessary actions it is possible to present a corresponding structure circuit. According to described above we tried to mention basic technologies used in modern power electronics. The perspectives of the electronics in the nearest future are connected with the further improvement of basic technologies, because their combination allows for developing new technologies. In our opinion, there are four such technologies.Стаття присвячена проблемам схемотехніки у сучасній енергетиці. Розглянуто декілька напрямків розробок електроприводів, відмічено їхні переваги та недоліки. Описано сучасні схемотехнічні можливості та перспективні напрямки їхнього подальшого розвитку в Україні

    Quantum Critical Scaling in a Moderately Doped Antiferromagnet

    Full text link
    Using high temperature expansions for the equal time correlator S(q)S(q) and static susceptibility χ(q)\chi(q) for the t-J model, we present evidence for quantum critical (QC), z ⁣= ⁣1z\!=\!1, behavior at intermediate temperatures in a broad range of t/Jt/J ratio, doping, and temperatures. We find that the dynamical susceptibility is very close to the universal scaling function computable for the asymptotic QC regime, and that the dominant energy scale is temperature. Our results are in excellent agreement with measurements of the spin-echo decay rate, 1/T2G1/T_{\rm 2G}, in La2_2CuO4_4, and provide qualitative understanding of both 1/T11/T_1 and 1/T2G1/T_{\rm 2G} nuclear relaxation rates in doped cuprates.Comment: 11 pages, REVTeX v3.0, PostScript file for 3 figures is attached, UIUC-P-93-07-068. In this revised version, we calculate the scaling functions and thus present new and more direct evidence in favor of our original conclusion

    Anomalous Spin Dynamics in Doped Quantum Antiferromagnets

    Full text link
    Finite-temperature spin dynamics in planar t-J model is studied using the method based on the Lanczos diagonalization of small systems. Dynamical spin structure factor at moderate dopings shows the coexistence of free-fermion-like and spin-fluctuation timescales. At T<J, the low-frequency and static susceptibility show pronounced T dependence, supporting a scenario, related to the marginal Fermi-liquid one, for the explanation of neutron-scattering and NMR-relaxation experiments in cuprates. Calculated NMR relaxation rates reasonably reproduce experimental ones.Comment: 10 pages + 4 figures, Postscript in uuencoded compressed tar file, IJS-TP-94/2

    The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source - Design and Performance

    Full text link
    The design and performance of the new Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct geometry inelastic time-of-flight spectrometer, designed to cover essentially the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM2, AMATERAS at J-PARC, PHAROS at LANSCE and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments

    Layer- and bulk roton excitations of 4He in porous media

    Full text link
    We examine the energetics of bulk and layer-roton excitations of 4He in various porous medial such as aerogel, Geltech, or Vycor, in order to find out what conclusions can be drawn from experiments on the energetics about the physisorption mechanism. The energy of the layer-roton minimum depends sensitively on the substrate strength, thus providing a mechanism for a direct measurement of this quantity. On the other hand, bulk-like roton excitations are largely independent of the interaction between the medium and the helium atoms, but the dependence of their energy on the degree of filling reflects the internal structure of the matrix and can reveal features of 4He at negative pressures. While bulk-like rotons are very similar to their true bulk counterparts, the layer modes are not in close relation to two-dimensional rotons and should be regarded as a third, completely independent kind of excitation

    Scaling Regimes, Crossovers, and Lattice Corrections in 2D Heisenberg Antiferromagnets

    Full text link
    We study scaling behavior in 2D, S=1/2 and S=1 Heisenberg antiferromagnets using the data on full q-dependences of the equal time structure factor and the static susceptibility, calculated through high temperature expansions. We also carry out comparisons with a model of two coupled S=1/2 planes with the interlayer coupling tuned to the T=0 critical point. We separately determine the spin-wave velocity c and mass m=c/ξm=c/\xi, in addition to the correlation length, ξ\xi, and find that c is temperature dependent; only for T\alt JS, it approaches its known T=0 value c0c_0. Despite this temperature dependent spin-wave velocity, full q- and ω\omega-dependences of the dynamical susceptibility χ(q,ω)\chi(\bf q,\omega) agree with the universal scaling functions computable for the σ\sigma-model, for temperatures upto T00.6c0/aT_0 \sim 0.6c_0/a. Detailed comparisons show that below T0T_0 the S=1 model is in the renormalized classical (RC) regime, the two plane model is in the quantum critical (QC) regime, and the S=1/2 model exhibits a RC-QC crossover, centered at T=0.55J. In particular, for the S=1/2 model above this crossover and for the two-plane model at all T, the spin-wave mass is in excellent agreement with the universal QC prediction, m1.04Tm\simeq 1.04\,T. In contrast, for the S=1/2 model below the RC-QC crossover, and for the S=1 model at all T, the behavior agrees with the known RC expression. For all models nonuniversal behavior occurs above T0.6c0/aT\sim 0.6c_0/a. Our results strongly support the conjecture of Chubukov and Sachdev that the S=1/2 model is close to the T=0 critical point to exhibit QC behavior.Comment: 13 pages, REVTeX with attached PostScript (see file for addl info
    corecore