3,239 research outputs found

    Neutral interstellar He parameters in front of the heliosphere 1994--2007

    Full text link
    Analysis of IBEX measurements of neutral interstellar He flux brought the inflow velocity vector different from the results of earlier analysis of observations from GAS/Ulysses. Recapitulation of results on the helium inflow direction from the past ~40 years suggested that the inflow direction may be changing with time. We reanalyze the old Ulysses data and reprocess them to increase the accuracy of the instrument pointing to investigate if the GAS observations support the hypothesis that the interstellar helium inflow direction is changing. We employ a similar analysis method as in the analysis of the IBEX data. We seek a parameter set that minimizes reduced chi-squared, using the Warsaw Test Particle Model for the interstellar He flux at Ulysses with a state of the art model of neutral He ionization in the heliosphere, and precisely reproducing the observation conditions. We also propose a supplementary method of constraining the parameters based on cross-correlations of parameters obtained from analysis of carefully selected subsets of data. We find that the ecliptic longitude and speed of interstellar He are in a very good agreement with the values reported in the original GAS analysis. We find, however, that the temperature is markedly higher. The 3-seasons optimum parameter set is lambda = 255.3, beta = 6, v = 26.0 km/s, T = 7500 K. We find no evidence that it is varying with time, but the uncertainty range is larger than originally reported. The originally-derived parameters of interstellar He from GAS are in good agreement with presently derived, except for the temperature, which seems to be appreciably higher, in good agreement with interstellar absorption line results. While the results of the present analysis are in marginal agreement with the earlier reported results from IBEX, the most likely values from the two analyses differ for reasons that are still not understood.Comment: submitted for publication in Astronomy & Astrophysic

    Anomalous Spin Dynamics in Doped Quantum Antiferromagnets

    Full text link
    Finite-temperature spin dynamics in planar t-J model is studied using the method based on the Lanczos diagonalization of small systems. Dynamical spin structure factor at moderate dopings shows the coexistence of free-fermion-like and spin-fluctuation timescales. At T<J, the low-frequency and static susceptibility show pronounced T dependence, supporting a scenario, related to the marginal Fermi-liquid one, for the explanation of neutron-scattering and NMR-relaxation experiments in cuprates. Calculated NMR relaxation rates reasonably reproduce experimental ones.Comment: 10 pages + 4 figures, Postscript in uuencoded compressed tar file, IJS-TP-94/2

    Quantum-Critical Behavior in a Two-Layer Antiferromagnet

    Full text link
    We analyze quantum Monte Carlo data in the vicinity of the quantum transition between a Neel state and a quantum paramagnet in a two-layer, square lattice spin 1/2 Heisenberg antiferromagnet. The real-space correlation function and the universal amplitude ratio of the structure factor and the dynamic susceptibility show clear evidence of quantum critical behavior at low temperatures. The numerical results are in good quantitative agreement with 1/N1/N calculations for the O(N)O(N) non-linear sigma model. A discrepancy, reported earlier, between the critical properties of the antiferromagnet and the sigma model is resolved. We also discuss the values of prefactors of the dynamic susceptibility and the structure factor in a single layer antiferromagnet at low TT.Comment: 11 pages, REVtex file, 5 figures in a uuencoded, gziped file. One citation added

    Pan-squamous genomic profiling stratified by anatomic tumor site and viral association

    Get PDF
    Background: Squamous cell carcinomas (SCC) have diverse anatomic etiologies but may share common genomic biomarkers. We profiled 7,871 unique SCCs across nine anatomic sites to investigate commonality in genomic alterations (GA), tumor mutational burden (TMB), human papillomavirus (HPV) association, and mutational signatures. Methods: Tissue from over 8,100 unique SCC samples originating from nine anatomic sites (anogenital (anus, cervix, penis, vagina, vulva), esophagus, head and neck, lung, and skin) were sequenced by hybrid capture-based comprehensive genomic profiling to evaluate GA and TMB. About 3% of non-cutaneous SCC samples had UV signatures, indicative of potential primary site misdiagnoses, and were filtered from the analysis. Detection of HPV, including high-risk strains 16, 18, 31, 33, and 45, was implemented through de novo assembly of non-human sequencing reads and BLASTn comparison against all viral nucleotide sequences in the NCBI database. Results: The proportion of HPV+ patients by anatomic site varied, with the highest being anal (91%) and cervical (83%). The mutational landscape of each cohort was similar, regardless of anatomic origin, but clustered based on HPV status. The largest differences in GA frequency as stratified by HPV- vs. HPV+ were TP53 (87% vs. 12%), CDKN2A (45% vs. 6%), and PIK3CA (22% vs. 33%). The median TMB in cases originating from HPV-associated sites was similar, regardless of HPV status. Higher median TMB was observed in lung and skin cases, which exhibited significant enrichment of mutational signatures indicative of tobacco- and UV-induced DNA damage, respectively. Conclusions: HPV+ and HPV- SCC populations have distinct genomic profiles and, for the latter, anatomic site is correlated with TMB distribution, secondary to associated carcinogen exposure. As such, biomarkers such as TMB and UV signature can provide unexpected insight into site of origin misdiagnoses and may correlate with benefit from immune checkpoint inhibitors

    Interstellar neutral helium in the heliosphere from IBEX observations. III. Mach number of the flow, velocity vector, and temperature from the first six years of measurements

    Full text link
    We analyzed observations of interstellar neutral helium (ISN~He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN~He simulation model, presented in the companion paper by Sokol_et al. 2015, and a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al 2015. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN~He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of ~6 degree, with the other parameters varying accordingly along the parameter tube, and the minimum chi-square value is larger than expected. We found, however, that the Mach number of the ISN~He flow shows very little scatter and is thus very tightly constrained. It is in excellent agreement with the original analysis of ISN~He observations from IBEX and recent reanalyses of observations from Ulysses. We identify a possible inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in the ISN~He parameters obtained from the yearly subsets, and we suppose that another component may exist in the signal, or a process that is not accounted for in the current physical model of ISN~He in front of the heliosphere. From our analysis, the inflow velocity vector, temperature, and Mach number of the flow are equal to lambda_ISNHe = 255.8 +/- 0.5 degree, beta_ISNHe = 5.16 +/- 0.10 degree, T_ISNHe = 7440 +/- 260 K, v_ISNHe = 25.8 +/- 0.4$ km/s, and M_ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the parameter tube.Comment: Updated reference

    Spin Dependence of Correlations in Two-Dimensional Quantum Heisenberg Antiferromagnets

    Full text link
    We present a series expansion study of spin-S square-lattice Heisenberg antiferromagnets. The numerical data are in excellent agreement with recent neutron scattering measurements. Our key result is that the correlation length for S>1/2 strongly deviates from the exact T->0 (renormalized classical, or RC) scaling prediction for all experimentally and numerically accessible temperatures. We note basic trends with S of the experimental and series expansion correlation length data and propose a scaling crossover scenario to explain them.Comment: 5 pages, REVTeX file. PostScript file for the paper with embedded figures available via WWW at http://xxx.lanl.gov/ps/cond-mat/9503143

    Spin Dynamics of La_2CuO_4 and the Two-Dimensional Heisenberg Model

    Full text link
    The spin-lattice relaxation rate 1/T11/T_1 and the spin echo decay rate 1/T2G1/T_{2G} for the 2D Heisenberg model are calculated using quantum Monte Carlo and maximum entropy analytic continuation. The results are compared to recent experiments on La2_2CuO4_4, as well as predictions based on the non-linear σ\sigma-model.Comment: Compressed & uuencoded Postscript file (4 pages with figures
    corecore