3 research outputs found

    Fostering social innovation and building adaptive capacity for dengue control in Cambodia: a case study

    Get PDF
    Background: The social-ecological systems theory, with its unique conception of resilience (social-ecological systems & resilience, SESR), provides an operational framework that currently best meets the need for integration and adaptive governance as encouraged by the Sustainable Development Goals. SESR accounts for the complex dynamics of social-ecological systems and operationalizes transdisciplinarity by focusing on community engagement, value co-creation, decentralized leadership and social innovation. Targeting Social Innovation (SI) in the context of implementation research for vector-borne diseases (VBD) control offers a low-cost strategy to contribute to lasting and contextualized community engagement in disease control and health development in low and middle income countries of the global south. In this article we describe the processes of community engagement and transdisciplinary collaboration underpinning community-based dengue management in rural primary schools and households in two districts in Cambodia. Methods: Multiple student-led and community-based interventions have been implemented focusing on empowering education, communication for behavioral change and participatory epidemiology mapping in order to engage Cambodian communities in dengue control. We describe in particular the significance of the participatory processes that have contributed to the design of SI products that emerged following iterative consultations with community stakeholders to address the dengue problem. Results: The SI products that emerged following our interaction with community members are 1) adult mosquito traps made locally from solid waste collections, 2) revised dengue curriculum with hands-on activities for transformative learning, 3) guppy distribution systems led by community members, 4) co-design of dengue prevention communication material by students and community members, 5) community mapping. Conclusions: The initiative described in this article put in motion processes of community engagement towards creating ownership of dengue control interventions tools by community stakeholders, including school children. While the project is ongoing, the project's interventions so far implemented have contributed to the emergence of culturally relevant SI products and provided initial clues regarding 1) the conditions allowing SI to emerge, 2) specific mechanisms by which it happens and 3) how external parties can facilitate SI emergence. Overall there seems to be a strong argument to be made in supporting SI as a desirable outcome of project implementation towards building adaptive capacity and resilience and to use the protocol supporting this project implementation as an operational guiding document for other VBD adaptive management in the region

    The PAGODAS protocol: pediatric assessment group of dengue and Aedes saliva protocol to investigate vector-borne determinants of Aedes-transmitted arboviral infections in Cambodia

    No full text
    Abstract Background Mosquito-borne arboviruses, like dengue virus, continue to cause significant global morbidity and mortality, particularly in Southeast Asia. When the infectious mosquitoes probe into human skin for a blood meal, they deposit saliva containing a myriad of pharmacologically active compounds, some of which alter the immune response and influence host receptivity to infection, and consequently, the establishment of the virus. Previous reports have highlighted the complexity of mosquito vector-derived factors and immunity in the success of infection. Cumulative evidence from animal models and limited data from humans have identified various vector-derived components, including salivary components, that are co-delivered with the pathogen and play an important role in the dissemination of infection. Much about the roles and effects of these vector-derived factors remain to be discovered. Methods/Design We describe a longitudinal, pagoda (community)-based pediatric cohort study to evaluate the burden of dengue virus infection and document the immune responses to salivary proteins of Aedes aegypti, the mosquito vector of dengue, Zika, and chikungunya viruses. The study includes community-based seroprevalence assessments in the peri-urban town of Chbar Mon in Kampong Speu Province, Cambodia. The study aims to recruit 771 children between the ages of 2 and 9 years for a three year period of longitudinal follow-up, including twice per year (rainy and dry season) serosurveillance for dengue seroconversion and Ae. aegypti salivary gland homogenate antibody intensity determinations by ELISA assays. Diagnostic tests for acute dengue, Zika and chikungunya viral infections will be performed by RT-PCR. Discussion This study will serve as a foundation for further understanding of mosquito saliva immunity and its impact on Aedes-transmitted arboviral diseases endemic to Cambodia. Trial registration NCT03534245 registered on 23 May 2018
    corecore