575 research outputs found

    A peculiar repetitive sequence in the rat genome

    Get PDF
    AbstractWe report here a new type of peculiar repetitive sequence, A15T(TC)9T12, which was detected at 750 base pairs (bp) upstream of a rat calmodulin processed pseudogene by DNA sequencing of cloned DNA fragments. This sequence element could possibly form a cruciform structure with a 12-AT-pair stem, exposing (CT)9 sequences as a loop. S1 nuclease protection experiments failed to identify this element as a cruciform structure but instead detected an alternating purine pyrimidine tract at 50 bp downstream of this element. Total genomic Southern blotting showed that the rat genome contains only a few of these elements

    Mechanotransduction in A549 Alveolar Cells via Cell Stretch-Induced ATP Release

    Get PDF

    Evolutionary conservation and changes in insect TRP channels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TRP (Transient Receptor Potential) channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in <it>Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis</it>, and <it>Pediculus humanus </it>genomes as part of genome sequencing efforts.</p> <p>Results</p> <p>All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in <it>B. mori</it>, <it>A. mellifera</it>, and <it>N. vitripennis</it>. Although <it>P. humanus </it>and <it>D. melanogaster </it>contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. <it>T. castaneum</it>, <it>A. mellifera</it>, and <it>N. vitripennis </it>contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in <it>Drosophila</it>, is missing in <it>A. mellifera </it>and <it>N. vitripennis</it>; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA). NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera.</p> <p>Conclusion</p> <p>The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP family members. As shown for mammalian TRP channels, this may suggest that single TRP channels are responsible for integrating diverse sensory inputs to maintain the insect sensory systems. The above results demonstrate that there are both evolutionary conservation and changes in insect TRP channels. In particular, the evolutionary processes have been accelerated in the TRPA subfamily, indicating divergence in the mechanisms that insects use to detect environmental temperatures.</p

    Evaluation of extensional and torsional stiffness of single actin filaments by molecular dynamics analysis.

    Get PDF
    It is essential to investigate the mechanical behaviour of cytoskeletal actin filaments in order to understand their critical role as mechanical components in various cellular functional activities. These actin filaments consisting of monomeric molecules function in the thermal fluctuations. Hence, it is important to understand their mechanical behaviour on the microscopic scale by comparing the stiffness based on thermal fluctuations with the one experimentally measured on the macroscopic scale. In this study, we perform a large-scale molecular dynamics (MD) simulation for a half-turn structure of an actin filament. We analyse its longitudinal and twisting Brownian motions in equilibrium and evaluated its apparent extensional and torsional stiffness on the nanosecond scale. Upon increasing the sampling-window durations for analysis, the apparent stiffness gradually decreases and exhibits a trend to converge to a value that is close to the experimental value. This suggests that by extrapolating the data obtained in the MD analysis, we can estimate the experimentally determined stiffness on the microsecond to millisecond scales. For shorter temporal scales, the apparent stiffness is larger than experimental values, indicating that fast, local motions of the molecular structure are dominant. To quantify the local structural changes within the filament on the nanosecond scale and investigate the molecular mechanisms, such as the binding of the actin-regulatory proteins to the filaments, it is preferable to analyse the mechanical behaviour on the nanometre and nanosecond scales using MD simulation

    Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori

    Get PDF
    In the bivoltine strain of the silkworm, Bombyx mori, embryonic diapause is induced transgenerationally as a maternal effect. Progeny diapause is determined by the environmental temperature during embryonic development of the mother; however, its molecular mechanisms are largely unknown. Here, we show that the Bombyx TRPA1 ortholog (BmTrpA1) acts as a thermosensitive transient receptor potential (TRP) channel that is activated at temperatures above similar to 21 degrees C and affects the induction of diapause in progeny. In addition, we show that embryonic RNAi of BmTrpA1 affects diapause hormone release during pupal-adult development. This study identifying a thermosensitive TRP channel that acts as a molecular switch for a relatively long-term predictive adaptive response by inducing an alternative phenotype to seasonal polyphenism is unique.ArticlePROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 111(13):E1249-E1255 (2014)journal articl
    corecore