14 research outputs found

    Promising emission behavior in Pr 3+ /In selenide-chalcogenide-glass small-core step index fiber (SIF)

    Get PDF
    Selenide-chalcogenide glass, small-core, step-index fiber (SIF), core-doped with Pr3+: 9.51 × 1024 ions m−3 (500 ppmw) is fabricated for the first time with indium to help solubilize Pr3+. Core diameters of 20 or 40 μm are confirmed using scanning electron microscopy and near-field imaging; fibre numerical aperture is ∼0.4. Optical loss is ≥ 4.9 dB m−1 across the 3–9 μm mid-infrared (MIR) spectral range. On pumping at 1.55 μm or 2.013 μm, the SIFs give broad MIR emission across 3.5–6 μm assigned to 3H6 → 3H5 and 3H5 → 3H4. The Pr3+ emission-lifetime at 4.7 μm decreases from bulk-glass (10.1 ± 0.3 ms), to intermediately processed fiber (8.10 ± 0.5 ms) to SIF (7.1 ± 0.5 ms) induced by the processing. On end-pumping SIFs at 2.013 μm, the output pump-power and emission intensity at 4.7 μm became sub-linear and super-linear, respectively, suggesting MIR excited-state saturation is occurring

    Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber

    Get PDF
    This contribution reports on detailed experimental and numerical investigations of both near-infrared (NIR) and mid-infrared (MIR) photoluminescence obtained in praseodymium trivalent ion doped chalcogenide-selenide glass fiber. The experimental analysis allows for the identification of the radiative transitions within the praseodymium ion energy level structure to account for the photoluminescent behavior. Numerical analysis is carried out using the rate equations’ approach to calculate the level populations. The numerical analysis provides further insight into the nature of the radiative transitions in the Pr3+ ion doped chalcogenide-selenide glass and allows for the identification of the electronic transitions, which contribute to the observed photoluminescence. The numerical results agree well with the experimental results

    Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for midinfrared photonics

    Get PDF
    Chalcogenide glass fibers have attractive properties (e.g. wide transparent window, high optical non-linearity) and numerous potential applications in the mid-infrared (MIR) region. Low optical loss is desired and important in the development of these fibers. Ge-As-Se glass has a large glass-forming range to provide versatility of choice from continuously varying physical properties. Recently, broadband MIR supercontinuum generation has been achieved in chalcogenide fibers by using Ge-As-Se glass in the core/clad. structure. In the shaping of chalcogenide glass optical fiber preforms, extrusion is a useful technique. This work reports glass properties (viscosity-temperature curve and glass transition) and optical losses of Ge-As-Se fiber fabricated from an extruded preform. A robust cut-back method of fiber loss measurement is developed and the corresponding error calculation discussed. MIR light is propagated through 52 meters of a fiber, which has the lowest loss yet reported for Ge-As-Se fiber of 83 ± 2 dB/km at 6.60 μm wavelength. The fiber baseline loss is 83-90 dB/km across 5.6-6.8 μm, a Se-H impurity absorption band of 1.4 dB/m at 4.5 μm wavelength is superposed and other impurity bands (e.g. O-H, As-O, Ge-O) are ≤ 20 dB/km. Optical losses of fiber fabricated from different positions of the extruded preform are investigated

    Experimental observation of gain in a resonantly pumped Pr3+-doped chalcogenide glass mid-infrared fibre amplifier notwithstanding the signal excited-state absorption

    Get PDF
    We demonstrate a maximum gain of 4.6 dB at a signal wavelength of 5.28 μm in a 4.1 μm resonantly pumped Pr3+- doped selenide-based chalcogenide glass fibre amplifier of length 109 mm, as well as a new signal excited-stated absorption (ESA) at signal wavelengths around 5.5 μm. This work is to the best of our knowledge is the first experimental demonstration of gain at mid-infrared (MIR) wavelengths in a Pr3+-doped chalcogenide fibre amplifier. The signal ESA of Pr3+ ions is attributed to the transition 3H6→(3F4, 3F3) after the pump ESA (3H5→3H6) at a pump wavelength of 4.1 μm, which absorbs the MIR signal at wavelengths of 5.37, 5.51 and 5.57 μm, and so spoils the amplifier’s performance at these wavelengths. Thus, this signal ESA should be suppressed in a resonantly pumped Pr3+-doped chalcogenide fibre amplifier

    Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers

    Get PDF
    In this contribution we use a numerical model to study the photoluminescence emitted by Tb3+ doped chalcogenide-selenide glass fibers pumped by laser light at approximately 3 µm. The model consists of the set of ordinary differential equations (ODEs), which describe the spatial evolution of the pump laser and MIR photoluminescence light within the fiber. The ODEs are coupled with the rate equations that describe the energy level populations. A self-consistent solution of the equation system yields the pump light, MIR photoluminescence and level population distribution within the fiber. Using the developed model we numerically calculate results and discuss the dependence of the output photoluminescence MIR power on the fiber optical loss, fiber length and pump wavelength

    Comparative study of praseodymium additives in active selenide chalcogenide optical fibers

    Get PDF
    The choice of rare earth additive when doping chalcogenide glasses can affect their mid-infrared fiber performance. Three praseodymium additives, Pr-foil, PrCl3 and PrI3 are investigated in Ge-As-Ga-Se fibers. All the fibers are X-ray amorphous and the Pr(foil)-doped fiber has the lowest overall optical loss. Pumping at 1550 nm wavelength, the Pr3+-doped fibers exhibit photoluminescence across a 3.5 to 6 μm span; photoluminescence lifetimes are 10 ms for 3H5→3H4 and 2-3 ms for (3H6, 3F2)→3H5 transitions. A fast 0.21 ms decay for (3F3, 3F4)→3H6 is observed only in the PrCl3-doped fiber due to a lower phonon energy local environment of Pr3+ ions

    First identification of rare-earth oxide nucleation in chalcogenide glasses and implications for fabrication of mid-infrared active fibers

    Get PDF
    Gallium (Ga) helps solubilize rare-earth ions in chalcogenide glasses, but has been found to form the dominant crystallizing selenide phase in bulk glass in our previous work. Here, the crystallization behavior is compared of as-annealed 0–3000 ppmw Dy3+-doped Ge–As–Ga–Se glasses with different Ga levels: Ge16.5As(19−x)GaxSe64.5 (at.%), for x = 3 and 10, named Ga3 and Ga10 glass series, respectively. X-ray diffraction and high-resolution transmission electron microscopy are employed to examine crystals in the bulk of the as-prepared glasses, and the crystalline phase is proved to be the same: Ge-modified, face centered cubic α-Ga2Se3. Light scattering of polished glass samples is monitored using Fourier transform spectroscopy. When Ga is decreased from 10 to 3 at.%, the bulk crystallization is dramatically reduced and the optical scattering loss decreases. Surface defects, with a rough topology observed for both series of as-prepared chalcogenide glasses, are demonstrated to comprise Dy, Si, and [O]. For the first time, evidence for the proposed nucleation agent Dy2O3 is found inside the bulk of as-prepared glass. This is an important result because rare-earth ions bound in a high phonon–energy oxide local environment are, as a consequence, inactive mid-infrared fluorophores because they undergo preferential nonradiative decay of excited states
    corecore