563 research outputs found

    Manganese superoxide dismutase as a diagnostic marker for malignant pleural mesothelioma

    Get PDF
    Although several immunohistochemical markers are available, differential diagnosis between mesothelioma and metastatic adenocarcinoma of the pleura is difficult. We have found that the immunoreactivity of manganese superoxide dismutase (MnSOD), an important antioxidant enzyme, is high in mesothelioma compared to healthy pleural mesothelium. The aim of the present study was to investigate whether MnSOD can be used in the differential diagnosis of malignant mesothelioma and metastatic adenocarcinoma of the pleura. MnSOD expression was assessed by using immunohistochemistry in biopsies of malignant mesothelioma (n = 35) and metastatic adenocarcinoma of the pleura (n = 21). MnSOD immunoreactivity was assessed semiquantitatively with and without microwave pretreatment. Fifteen of the 35 malignant mesotheliomas showed moderate or strong MnSOD expression without and 23 with microwave pretreatment, the corresponding figures for metastatic adenocarcinoma of the pleura being 1 and 2 out of 21 (P = 0.002 and P< 0.001, respectively by Fisher's exact test). Only mesothelioma biopsies showed strong MnSOD reactivity, and it was never negative in mesothelioma, whereas one-third of the adenocarcinomas showed no MnSOD reactivity. In conclusion, MnSOD immunoreactivity can, combined with other markers, aid the differential diagnosis between malignant mesothelioma and metastatic adenocarcinoma of the pleura. © 2000Cancer Research Campaig

    Expression of inducible nitric oxide synthase in healthy pleura and in malignant mesothelioma

    Get PDF
    In this study we investigated the immunohistochemical expression of inducible nitric oxide synthase (iNOS) in a set of normal pleural mesothelial tissues, malignant mesotheliomas, mesothelioma cell lines and metastatic pleural adenocarcinomas. Furthermore, the expression of mRNA was assessed in four malignant mesothelioma cell lines in culture. Apoptosis and vascular density in malignant mesotheliomas was assessed by the TUNEL method and by immunohistochemistry with an antibody against FVIII-related antigen. Immunohistochemically mesothelial cells in non-neoplastic healthy pleural tissues were mostly negative for iNOS. Positivity for iNOS was observed in 28/38 (74%) and 24/25 (96%) of malignant mesotheliomas and metastatic pleural adenocarcinomas, respectively. Epithelial and mixed mesotheliomas expressed more often strong iNOS immunoreactivity compared to the sarcomatoid subtype (P = 0.023). Moreover, metastatic adenocarcinomas expressed more often iNOS positivity than mesotheliomas (P = 0.021). Experiments with the cell lines confirmed that malignant mesothelioma cells are capable of synthesizing iNOS. No significant association was found between iNOS expression and apoptosis or vascular density in malignant mesotheliomas. The higher expression of iNOS in the epithelial subtype of mesothelioma and pleural metastatic adenocarcinoma might be due to an increased sensitivity of these cell types to cytokine-mediated iNOS upregulation. The strong expression of iNOS suggests a putative role for NO in the growth and progression of these tumours. © 2000 Cancer Research Campaig

    Humulone Modulation of GABAA Receptors and Its Role in Hops Sleep-Promoting Activity

    Get PDF
    Humulus lupulus L. (hops) is a major constituent of beer. It exhibits neuroactive properties that make it useful as a sleeping aid. These effects are hypothesized to be mediated by an increase in GABAA receptor function. In the quest to uncover the constituents responsible for the sedative and hypnotic properties of hops, recent evidence revealed that humulone, a prenylated phloroglucinol derivative comprising 35–70% of hops alpha acids, may act as a positive modulator of GABAA receptors at low micromolar concentrations. This raises the question whether humulone plays a key role in hops pharmacological activity and potentially interacts with other modulators such as ethanol, bringing further enhancement in GABAA receptor-mediated effects of beer. Here we assessed electrophysiologically the positive modulatory activity of humulone on recombinant GABAA receptors expressed in HEK293 cells. We then examined humulone interactions with other active hops compounds and ethanol on GABA-induced displacement of [3H]EBOB binding to native GABAA receptors in rat brain membranes. Using BALB/c mice, we assessed humulone’s hypnotic behavior with pentobarbital- and ethanol-induced sleep as well as sedation in spontaneous locomotion with open field test. We demonstrated for the first time that humulone potentiates GABA-induced currents in α1β3γ2 receptors. In radioligand binding to native GABAA receptors, the inclusion of ethanol enhanced humulone modulation of GABA-induced displacement of [3H]EBOB binding in rat forebrain and cerebellum as it produced a leftward shift in [3H]EBOB displacement curves. Moreover, the additive modulatory effects between humulone, isoxanthohumol and 6-prenylnaringenin were evident and corresponded to the sum of [3H]EBOB displacement by each compound individually. In behavioral tests, humulone shortened sleep onset and increased the duration of sleep induced by pentobarbital and decreased the spontaneous locomotion in open field at 20 mg/kg (i.p.). Despite the absence of humulone effects on ethanol-induced sleep onset, sleep duration was increased dose-dependently down to 10 mg/kg (i.p.). Our findings confirmed humulone’s positive allosteric modulation of GABAA receptor function and displayed its sedative and hypnotic behavior. Humulone modulation can be potentially enhanced by ethanol and hops modulators suggesting a probable enhancement in the intoxicating effects of ethanol in hops-enriched beer.</p

    The Influence of AA29504 on GABA A Receptor Ligand Binding Properties and Its Implications on Subtype Selectivity

    Get PDF
    The unique pharmacological properties of δ-containing γ-aminobutyric acid type A receptors (δ-GABAARs) make them an attractive target for selective and persistent modulation of neuronal excitability. However, the availability of selective modulators targeting δ-GABAARs remains limited. AA29504 ([2-amino-4-(2,4,6-trimethylbenzylamino)-phenyl]-carbamic acid ethyl ester), an analog of K+ channel opener retigabine, acts as an agonist and a positive allosteric modulator (Ago-PAM) of δ-GABAARs. Based on electrophysiological studies using recombinant receptors, AA29504 was found to be a more potent and effective agonist in δ-GABAARs than in γ2-GABAARs. In comparison, AA29504 positively modulated the activity of recombinant δ-GABAARs more effectively than γ2-GABAARs, with no significant differences in potency. The impact of AA29504's efficacy- and potency-associated GABAAR subtype selectivity on radioligand binding properties remain unexplored. Using [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate ([3H]EBOB) binding assay, we found no difference in the modulatory potency of AA29504 on GABA- and THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol)-induced responses between native forebrain GABAARs of wild type and δ knock-out mice. In recombinant receptors expressed in HEK293 cells, AA29504 showed higher efficacy on δ- than γ2-GABAARs in the GABA-independent displacement of [3H]EBOB binding. Interestingly, AA29504 showed a concentration-dependent stimulation of [3H]muscimol binding to γ2-GABAARs, which was absent in δ-GABAARs. This was explained by AA29504 shifting the low-affinity γ2-GABAAR towards a higher affinity desensitized state, thereby rising new sites capable of binding GABAAR agonists with low nanomolar affinity. Hence, the potential of AA29504 to act as a desensitization-modifying allosteric modulator of γ2-GABAARs deserves further investigation for its promising influence on shaping efficacy, duration and plasticity of GABAAR synaptic responses

    Impact of Trivalent Arsenicals on Selenoprotein Synthesis

    Get PDF
    BACKGROUND: Exposure to arsenic has been associated with development of skin, lung, bladder, liver, and kidney cancer. Recent evidence suggests that an increase in oxidative stress in cells treated with arsenicals represents the molecular mechanism behind arsenic-induced carcinogenesis. Selenium, in the form of selenocysteine, is necessary for the activity of several enzymes with a role in defense against reactive oxygen species. A mutual sparing effect between arsenic and selenium has been shown in animal studies when both metalloids are present in high concentrations. OBJECTIVES: To determine whether changes in selenoprotein synthesis may be an underlying mechanism behind arsenic-induced carcinogenesis, we analyzed the new synthesis of selenoproteins within cells after exposure to inorganic or methylated arsenicals using a human keratinocyte cell model. RESULTS: Addition of arsenite to culture medium blocked new synthesis of selenoproteins when selenium was present in the form of selenite, and appeared to stimulate the use of serum-derived selenium. Monomethylarsonous acid (MMA(III)) treatment of cells, in contrast, did not block all new synthesis of selenoproteins but did result in an increase in cytosolic thioredoxin reductase (TrxR1) at both the mRNA and protein levels. MMA(III) also reduced the new synthesis of cellular glutatione peroxidase (cGpx) and other smaller selenoproteins. Dimethylarsinous acid (DMA(III)) stimulated selenoprotein synthesis by an as yet unknown mechanism. CONCLUSIONS: These results suggest that arsenite and MMA(III) are key metabolites that trigger higher levels of TrxR1, and both lead to a reduction in the expression of cGpx. Together these effects certainly could lead to carcinogenesis given the knowledge that many cancers have higher levels of TrxR, and reduced Gpx levels will reduce the cell’s ability to defend against reactive oxygen species. Based on these results, the impact of the trivalent arsenicals arsenite and MMA(III) on selenoprotein synthesis may indeed represent a potential molecular mechanism for the higher rates of cancer observed in populations exposed to high levels of arsenic

    Apoptotic activity is increased in parallel with the metaplasia–dysplasia–carcinoma sequence of the bronchial epithelium

    Get PDF
    A high level of apoptotic activity and an independence of apoptosis from the expression of p53 and bcl-2 have been observed in non-small-cell lung carcinoma. We examined 44 samples of normal, metaplastic and premalignant (i.e. mild, moderate and severe dysplasias and carcinoma in situ) bronchial epithelia to evaluate whether differences in the apoptotic activity could already be seen in the stages preceding squamous cell carcinoma of the lung (SQCLC). Apoptotic cells and bodies were visualized by 3′ end labelling. The expression of p53 and members of the bcl-2 gene family, such as bcl-2, bax and mcl-1, were determined immunohistochemically with specific antibodies. The relative number of apoptotic cells and bodies [apoptotic index (AI%)] was already increased threefold as the normal bronchial epithelium changed to squamous metaplasia, and the AIs of the dysplastic lesions were about four times higher than those of the normal epithelium. Apoptosis was significantly associated with cell proliferation, as determined by proliferating cell nuclear antigen (PCNA) immunohistochemistry. However, the extent of apoptosis did not correlate with the expression of p53, bcl-2, bax and mcl-1. We conclude that, in the metaplasia–dysplasia–carcinoma sequence in the lung, the elevation of the AI% is an early event associated with cell proliferation activity, but is independent of the expression of p53, bcl-2, mcl-1 and bax. © 1999 Cancer Research Campaig

    Divergent expression of claudin -1, -3, -4, -5 and -7 in developing human lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Claudins are the main components of tight junctions, structures which are associated with cell polarity and permeability. The aim of this study was to analyze the expression of claudins 1, 3, 4, 5, and 7 in developing human lung tissues from 12 to 40 weeks of gestation.</p> <p>Methods</p> <p>47 cases were analyzed by immunohistochemisty for claudins 1, 3, 4, 5 and 7. 23 cases were also investigated by quantitative RT-PCR for claudin-1, -3 and -4.</p> <p>Results</p> <p>Claudin-1 was expressed in epithelium of bronchi and large bronchioles from week 12 onwards but it was not detected in epithelium of developing alveoli. Claudin-3, -4 and -7 were strongly expressed in bronchial epithelium from week 12 to week 40, and they were also expressed in alveoli from week 16 to week 40. Claudin-5 was expressed strongly during all periods in endothelial cells. It was expressed also in epithelium of bronchi from week 12 to week 40, and in alveoli during the canalicular period. RT-PCR analyses revealed detectable amounts of RNAs for claudins 1, 3 and 4 in all cases studied.</p> <p>Conclusion</p> <p>Claudin-1, -3, -4, -5, and -7 are expressed in developing human lung from week 12 to week 40 with distinct locations and in divergent quantities. The expression of claudin-1 was restricted to the bronchial epithelium, whereas claudin-3, -4 and -7 were positive also in alveolar epithelium as well as in the bronchial epithelium. All claudins studied are linked to the development of airways, whereas claudin-3, -4, -5 and -7, but not claudin-1, are involved in the development of acinus and the differentiation of alveolar epithelial cells.</p
    corecore