61 research outputs found

    Residual effects of natural Zn chelates on navy bean response, Zn leaching and soil status

    Get PDF
    greenhouse experiment was conducted on weakly acidic and calcareous soils to evaluate the aging and residual effects of three natural organic Zn chelates [Zn-ethylenediaminedisuccinate (Zn-EDDS), Zn-polyhydroxyphenylcarboxylate and Zn-aminelignosulfonate] each administered in a single application to a first navy bean (Phaseolus vulgaris L.) crop at several different Zn application rates. In a second navy bean crop, we determined the following parameters: the extent of Zn leaching, the amount of available Zn remaining in soils, the amount of easily leachable Zn, the size of Zn fractions in soils, the pH and redox potential, the dry matter yield, and the soluble and total Zn concentrations in plants. The residual effect after 2 years of Zn fertilization mainly depended on the aging effect of Zn chelates and losses due to Zn leaching. The data relating to the evolution from the first to the second crop showed that the aging effect was noticeable in the calcareous soil. In the latter soil, the Zn-S,S-EDDS treatments showed greater decreases in the Zn uptake by plants than the other Zn treatments and the greatest Zn uptake by plants occurred when Zn was applied as Zn-aminelignosulfonate (10 mg Zn kg−1 rate, 6.85 mg Zn per lysimeter; 5 mg Zn kg−1 rate, 3.36 mg Zn per lysimeter). In contrast, in the calcareous soil, the maximum amount of Zn uptake, for the three chelates was 0.82 mg Zn per lysimeter. Consequently, a further application of Zn would be needed to prevent Zn deficiencies in the plants of a subsequent crop. The behaviour of the pH and Eh parameters in the soils and leachates did not depend on the natural Zn sources applied. In this study, the easily leachable Zn estimated by BaCl2 extraction was not adequate to predict Zn leaching from the soils in subsequent crops

    Influence of soil type and natural Zn chelates on flax response, tensile properties and soil Zn availability

    Full text link
    A greenhouse experiment was conducted on weakly acidic and calcareous soils to evaluate the relative efficiencies of three natural Zn chelates [Zn-aminelignosulphonate (Zn-AML), Zn-polyhydroxyphenylcarboxylate (Zn-PHP) and Zn-S,S-ethylenediaminedisuccinate (Zn-S,S-EDDS)] applied to a crop textile flax (Linum ussitatisimum L.) at application rates of 0, 5 and 10 mg Zn kg−1. In the flax plant, the following parameters were determined: dry matter yield, soluble and total Zn concentrations in leaf and stem, chlorophyll, crude fibre, and tensile properties. For the different soil samples, the following parameters were determined: available Zn (DTPA-AB and Mehlich-3 extractable Zn), easily leachable Zn (BaCl2-extractable Zn), the distribution of Zn fractions, pH and redox potential. On the basis of the use of added Zn by flax, or Zn utilization, it would seem recommendable to apply Zn-S,S-EDDS at the low Zn rate in both soils. In contrast, adding the high Zn rate of this chelate to the weakly acidic soil produced an excessive Zn concentration in the plant, which caused a significant decrease in both dry matter yield and chlorophyll content. Furthermore, assessing available Zn with the DTPA-AB method proved the best way of estimating the level of excess Zn in flax plants. The soluble Zn concentration, which was established with 2-(N-morpholino)ethanesulfonic acid reagent (MES), of plant fresh and dry matter could be used as an alternative way of diagnosing the nutritional status of Zn in flax plants. In this experiment, the highest soil pHs were associated with the lowest redox potentials, which coincided with the smallest amounts of available Zn and water soluble Zn in soil, and the lowest levels of Zn uptake by flax plants

    Spatial and temporal changes in aeolian redistribution of sediments and nutrients following fire

    No full text
    Wildfires can profoundly alter rates, magnitudes, and ecological influences of aeolian redistribution of sediments and nutrients. This study examines the influence of fire in a semi-arid ecosystem using 2 years of continuous passive dust trap data in the northern Great Basin, USA. We analyse the mass flux, organic material content, grain size distribution, and geochemistry of the collected samples to trace the fingerprint of the 2015 Soda Fire through space and time. In areas not affected by fire, dust is characterized by silt-sized median grains, a geochemical signature consistent with a playa source area, and spatially consistent but seasonally variable dust flux rates. Following fire, dust flux increases significantly within and near the burned area. At burned and topographically sheltered sites, dust deposition in the eighth month following fire was 190% higher than dust deposition 2 years post-revegetation. Topographically exposed sites recorded only modest increases in dust deposition following fire. Analysis of organic matter indicates all dust samples (both burned and unburned) contained an average of 45% organic matter compared to a watershed average of 1.6% organic matter in soils. Geochemical and seasonal dust deposition data from 12 dust traps at a range of elevations indicate that with the removal of stabilizing vegetation after wildfire, differences in topographic position and wind direction lead to preferential redistribution of material across a burned landscape over hillslope scales (0–10 km). We posit post-fire aeolian redistribution of locally derived material to topographically controlled positions is an important control on the spatial variability of soil depth and characteristics in drylands with complex topography

    Soil taxonomy proposals for acid sulfate soils and subaqueous soils raised by the 8th International Acid Sulfate Soils Conference

    No full text
    The 8th International Acid Sulfate Soils Conference presented examples and discussions for classification of ‘acid sulfate soils’ and related issues for ‘subaqueous soils’. When these soils are disturbed or exposed, the sulfides (predominantly pyrite) react with oxygen to produce sulfuric acid; soil materials that do this to a great extent are recognised as ‘sulfidic materials’ in Soil Taxonomy. Soil Taxonomy describes physical and chemical properties and thresholds for incubation of sulfidic materials for acidification, and has developed definitions for features and materials commonly seen in these soils. However, based on discussions and examples from field tours the conference has several proposals to modify and add to existing definitions, such as adding new subgroups, defining sulfuric materials and editing the definition of the sulfuric horizon. These changes are centred on improving the interpretative value of taxa in Soil Taxonomy as well as use and management recommendations and their value in soil survey products
    • …
    corecore