33 research outputs found

    Asymmetry, sex differences and age-related changes in the white matter in the healthy elderly: a tract-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemispherical asymmetry, sex differences and age-related changes have been reported for the human brain. Meanwhile it was still unclear the presence of the asymmetry or sex differences in the human brain occurred whether as a normal development or as consequences of any pathological changes. The aim of this study was to investigate hemispherical asymmetry, sex differences and age-related changes by using a tract-based analysis in the nerve bundles.</p> <p>Methods</p> <p>40 healthy elderly subjects underwent magnetic resonance diffusion tensor imaging, and we calculated fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values along the major white matter bundles.</p> <p>Results</p> <p>We identified hemispherical asymmetry in the ADC values for the cingulate fasciculus in the total subject set and in males, and a sex difference in the FA values for the right uncinate fasciculus. For age-related changes, we demonstrated a significant increase in ADC values with advancing age in the right cingulum, left temporal white matter, and a significant decrease in FA values in the right superior longitudinal fasciculus.</p> <p>Conclusion</p> <p>In this study, we found hemispherical asymmetry, sex differences and age-related changes in particular regions of the white matter in the healthy elderly. Our results suggest considering these differences can be important in imaging studies.</p

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    Pulsed Sputtering Preparation of InGaN Multi-Color Cascaded LED Stacks for Large-Area Monolithic Integration of RGB LED Pixels

    No full text
    Micro-LEDs have been attracting attention as a potential candidate for the next generation of display technology. Here we demonstrate the feasibility of large-area monolithic integration of multi-color InGaN micro-LEDs via pulsed sputtering deposition (PSD) and a standard photolithographical technique. The PSD allows for sequential epitaxial growth of blue and green InGaN LED stacks connected with the GaN based tunneling junction. The tunneling junctions serve as protective layers on p-type GaN against the dry etching damage and hole injection layers in each blue and green emission InGaN active layer. The tunneling junction-connected multi-color InGaN LED stack contributes to the high-density and large-area monolithic integration of RGB micro-LEDs using standard photolithography and the ICP-dry etching method

    Pulsed Sputtering Preparation of InGaN Multi-Color Cascaded LED Stacks for Large-Area Monolithic Integration of RGB LED Pixels

    No full text
    Micro-LEDs have been attracting attention as a potential candidate for the next generation of display technology. Here we demonstrate the feasibility of large-area monolithic integration of multi-color InGaN micro-LEDs via pulsed sputtering deposition (PSD) and a standard photolithographical technique. The PSD allows for sequential epitaxial growth of blue and green InGaN LED stacks connected with the GaN based tunneling junction. The tunneling junctions serve as protective layers on p-type GaN against the dry etching damage and hole injection layers in each blue and green emission InGaN active layer. The tunneling junction-connected multi-color InGaN LED stack contributes to the high-density and large-area monolithic integration of RGB micro-LEDs using standard photolithography and the ICP-dry etching method

    アルツハイマー型認知症における白質経時変化の検討 : トラクトグラフィーを用いた研究

    No full text
    Alzheimer's disease (AD) classically presents with gray matter atrophy, as well as feature significant white matter abnormalities. Previous evidence indicates the overall burden of these pathological changes continues to advance as the disease progresses. The aim of this study was to investigate whether pathological alterations of white matter tracts correlate with the course of AD disease progression. 35 AD patients and 29 normal controls were recruited to the study and administered baseline magnetic resonance diffusion tensor imaging (DTI) acquisition and a cognitive function assessment at the time of initial evaluation. Subjects were re-evaluated with secondary DTI scan and cognitive function assessment at intervals of about 1.5 years on average. For the DTI acquired scans, we calculated diffusion tensor parameters, fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity (DR), and axial diffusivity (DA) along with the uncinate fasciculus (UNC), the inferior longitudinal fasciculus (ILF), and the inferior occipitofrontal fasciculus (IOFF). Compared to baseline, a significant mean FA reduction of the bilateral UNC, as well as a significant mean DR increase of the left UNC, was evident in AD patients at follow-up. Compared with normal controls, AD patients exhibited significant diffusion parameter abnormalities in their UNC, ILF, and IOFF. Taken together, these results indicate that progressive pathological white matter alterations can be quantified using the DTI parameters utilized here and may prove to be a useful biological marker for monitoring the pathophysiological course of AD.博士(医学)・甲第603号・平成25年11月27
    corecore