235 research outputs found

    One Prompt is not Enough: Automated Construction of a Mixture-of-Expert Prompts

    Full text link
    Large Language Models (LLMs) exhibit strong generalization capabilities to novel tasks when prompted with language instructions and in-context demos. Since this ability sensitively depends on the quality of prompts, various methods have been explored to automate the instruction design. While these methods demonstrated promising results, they also restricted the searched prompt to one instruction. Such simplification significantly limits their capacity, as a single demo-free instruction might not be able to cover the entire complex problem space of the targeted task. To alleviate this issue, we adopt the Mixture-of-Expert paradigm and divide the problem space into a set of sub-regions; Each sub-region is governed by a specialized expert, equipped with both an instruction and a set of demos. A two-phase process is developed to construct the specialized expert for each region: (1) demo assignment: Inspired by the theoretical connection between in-context learning and kernel regression, we group demos into experts based on their semantic similarity; (2) instruction assignment: A region-based joint search of an instruction per expert complements the demos assigned to it, yielding a synergistic effect. The resulting method, codenamed Mixture-of-Prompts (MoP), achieves an average win rate of 81% against prior arts across several major benchmarks.Comment: ICML 2024. code available at https://github.com/ruocwang/mixture-of-prompt

    Revolutionizing respiratory health research: “commercially-available lung-on-a-chip and air-liquid interface systems”

    Get PDF
    Inhalation of ultrafine particles, aerosol contaminants, and cigarette smoke can induce respiratory diseases. As humans are constantly exposed to various exogenous substances, it is crucial to study their impacts on respiratory diseases and airway dysfunction. Recently, organ-on-a-chip technology has been applied in many research studies to understand disease mechanisms, drug screening, and drug testing. The combination of organ-on-a-chip technology and the air-liquid interface (ALI) culture method is emerging as a new platform for realistically mimicking the microenvironment and physiological motions of the human lungs. Breathing motion can be simulated through cyclic stretching, while blood flow can be replicated using channel flow within the chip. The ALI system is critical for mucociliary differentiation, pseudostratified morphology, and epithelial barrier function development. The combination of organ-on-a-chip technology and ALI systems allows the integration of cyclic stretch as a breathing motion and microfluidic channels as circulatory systems. The chip system can also integrate the lung epithelial cells, extracellular matrix, and microstructures, providing microenvironments such as fibroblast, collagen, and immune cells to the epithelial cells. This review discusses chip systems as effective tools for recapitulating human lung environments and how they are applied in biological studies against various pulmonary diseases such as infections or inflammation, fibrosis, and malignancy

    Human Pose Estimation in Extremely Low-Light Conditions

    Full text link
    We study human pose estimation in extremely low-light images. This task is challenging due to the difficulty of collecting real low-light images with accurate labels, and severely corrupted inputs that degrade prediction quality significantly. To address the first issue, we develop a dedicated camera system and build a new dataset of real low-light images with accurate pose labels. Thanks to our camera system, each low-light image in our dataset is coupled with an aligned well-lit image, which enables accurate pose labeling and is used as privileged information during training. We also propose a new model and a new training strategy that fully exploit the privileged information to learn representation insensitive to lighting conditions. Our method demonstrates outstanding performance on real extremely low light images, and extensive analyses validate that both of our model and dataset contribute to the success.Comment: Accepted to CVPR 202

    Electrochemical detection of mismatched DNA using a MutS probe

    Get PDF
    A direct and label-free electrochemical biosensor for the detection of the protein–mismatched DNA interaction was designed using immobilized N-terminal histidine tagged Escherichia coli. MutS on a Ni-NTA coated Au electrode. General electrochemical methods, cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM) and impedance spectroscopy, were used to ascertain the binding affinity of mismatched DNAs to the MutS probe. The direct results of CV and impedance clearly reveal that the interaction of MutS with the CC heteroduplex was much stronger than that with AT homoduplex, which was not differentiated in previous results (GT > CT > CC ≈ AT) of a gel mobility shift assay. The EQCM technique was also able to quantitatively analyze MutS affinity to heteroduplexes

    Improved laminar specificity and sensitivity by combining SE and GE BOLD signals

    Get PDF
    The most widely used gradient-echo (GE) blood oxygenation level-dependent (BOLD) contrast has high sensitivity, but low specificity due to draining vein contributions, while spin-echo (SE) BOLD approach at ultra-high magnetic fields is highly specific to neural active sites but has lower sensitivity. To obtain high specificity and sensitivity, we propose to utilize a vessel-size-sensitive filter to the GE-BOLD signal, which suppresses macrovascular contributions and to combine selectively retained microvascular GE-BOLD signals with the SE-BOLD signals. To investigate our proposed idea, fMRI with 0.8 mm isotropic resolution was performed on the primary motor and sensory cortices in humans at 7 T by implementing spin- and gradient-echo (SAGE) echo planar imaging (EPI) acquisition. Microvascular-passed sigmoidal filters were designed based upon the vessel-size-sensitive ??R2*/??R2 value for retaining GE-BOLD signals originating from venous vessels with ??? 45 ??m and ??? 65 ??m diameter. Unlike GE-BOLD fMRI, the laminar profile of SAGE-BOLD fMRI with the vessel-size-sensitive filter peaked at ??? 1.0 mm from the surface of the primary motor and sensory cortices, demonstrating an improvement of laminar specificity over GE-BOLD fMRI. Also, the functional sensitivity of SAGE BOLD at middle layers (0.75???1.5 mm) was improved by ??? 80% to ???100% when compared with SE BOLD. In summary, we showed that combined GE- and SE-BOLD fMRI with the vessel-size-sensitive filter indeed yielded improved laminar specificity and sensitivity and is therefore an excellent tool for high spatial resolution ultra-high filed (UHF)-fMRI studies for resolving mesoscopic functional units

    Blood pressure and dementia risk by physical frailty in the elderly: a nationwide cohort study

    Get PDF
    Background Midlife hypertension has been recognized as a modifiable risk factor for dementia, but association between blood pressure (BP) in late life and dementia has been inconclusive. In addition, few studies have investigated effects of BP control on dementia incidence in the frail elderly. Thus, this study aimed to investigate the association of BP and dementia incidence with concomitant consideration of physical frailty in the young elderly population. Methods Using the Korean National Health Information Database, we identified 804,024 subjects without history of dementia at age 66. Dementia diagnosis was defined with prescription records of anti-dementia drugs and dementia-related diagnostic codes. Physical frailty was measured using the Timed Up and Go test. Association of BP and dementia incidence with concomitant consideration of physical frailty was investigated using Cox hazards analyses. Results The risks of Alzheimers and vascular dementia increased from systolic BP ≥ 160 and 130–139mmHg, respectively; a significant association of dementia incidence with low BP was not observed. In the analyses stratified by the physical frailty status, low BP was not associated with increased risks of dementia within the groups both with and without physical frailty. Conclusions High BP was associated with increased risks of dementia, especially for vascular dementia, while low BP was not associated with increased risks of any type of dementia in young elderly people, even in those with physical frailty. This study suggests the need for tight BP control in young elderly people, irrespective of frailty status, to prevent dementia and supports the current clinical guidelines of hypertension treatment

    Empirical relationship between TEM-derived myelin volume fraction and MRI-R2 values in aging ex vivo rat corpus callosum

    No full text
    Ex vivo ratiometric measurements of short- and long-T2 components using the multiple spin echo sequence of MRI are often employed to evaluate alterations in myelin content in the white matter (WM) of the brain. However, the relationship between absolute MRI-T2 values (long-T2 component) and myelin volumetric information in aged ex vivo rodent WM appears to be influenced by factors such as animal species, field strength, and fixation durations/washing. Here, multiple spin echo sequence-based MRI-R2 (the reciprocal of T2) values were measured in the corpus callosum (CC) region in the post-mortem rat brains (n = 9) of different age groups with common fixation techniques without washing at 7 T. Transmission electron microscopy (TEM)-based quantification of myelin volume fraction (MVF) and corresponding Monte-Carlo simulation to estimate relaxation rates (R2,IE) due to diffusion in the presence of inhomogeneous magnetic field perturbation in intra- and extra-cellular (IE) spaces were respectively performed. To determine whether the short-T2 components originating from myelin water were mixed with long-T2 components from IE water or were undetectable, the MVF values obtained from TEM results were respectively compared with MRI-R2 and R2,IE values. A significant correlation (Pearson's correlation coefficient r = 0.8763; p < 0.01) of average MRI-R2 and MVF values was observed. Estimated R2,IE values from Monte-Carlo simulations in IE water signals were also positively correlated (r = 0.8281; p < 0.01) with MVF values. However, the magnitudes of R2,IE values were much smaller than those observed for MRI-R2 values, indicating that changes in R2 related MVF are likely dominated by myelin water components. Such comparisons between independent parameters from MRI, TEM, and simulations support the suggestion that myelin water signals were indistinguishably mixed to exhibit mono-exponential T2 relaxation, and multiple spin echo sequence-based MRI-R2 values in aging ex vivo rat CC without prolonged washing still reflect the volumetric information of myelin, likely due to enhanced water exchange across the myelin

    Temporal resolution improvement of calibration-free dynamic contrast-enhanced MRI with compressed sensing optimized turbo spin echo: The effects of replacing turbo factor with compressed sensing accelerations

    No full text
    Purpose: To enhance the temporal resolution of calibration-free dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by implementing compressed sensing assisted turbo spin echo (CS-TSE) acquisition. Materials and Methods: The dynamic sparse sampling variables including acceleration factor, randomized phase encoding distributions, and reconstruction constraints were retrospectively optimized by minimizing the difference from fully sampled dynamic TSE at 7T. The degree of contrast enhancement and the calibration-free quantification of gadolinium (Gd) concentration were evaluated among fast low-angle shot (FLASH), TSE, and CS-TSE acquisitions with multiple phantoms (0.1-6mM). The kidney-feeding in vivo arterial input function (AIF) was measured at multiple administration doses (0.1-0.3 mmol/kg) to evaluate the benefit of CS-TSE for quantifying rapidly changing high Gd concentrations in C57BL/6 mice (n=22). Results: In phantom studies, both calibration-free and calibrated conversions estimated equivalent Gd concentrations for CS-TSE (scatterplot slope=0.9801, r2=0.9998, P < 0.001). In in vivo studies, 4-fold higher temporal resolution (0.96 sec) of CS-TSE over the corresponding TSE enabled robust measurement of AIF first-pass peak and resulting peak enhancement with CS-TSE were observed, with 1.1439- and 2.1258-fold times higher than those with TSE and FLASH acquisitions, respectively, at the 0.1 mmol/kg dose. Calibration-free estimates of AIF peak concentration with CS-TSE were in good agreement with the calibrated approach at multiple administration doses (scatterplot slope=0.7800, r2=0.8014, P < 0.001). Conclusion: Temporal resolution-improved CS-TSE provides practical subsecond (0.96s) calibration-free dynamic MR quantification of high Gd concentration. J. Magn. Reson. Imaging 2015.clos

    Emotional competence in Korean young children

    No full text
    corecore