37 research outputs found

    The spatial distribution of radiodense breast tissue: a longitudinal study

    Get PDF
    Introduction Mammographic breast density is one of the strongest known markers of susceptibility to breast cancer. To date research into density has relied on a single measure ( for example, percent density (PD)) summarising the average level of density for the whole breast, with no consideration of how the radiodense tissue may be distributed. This study aims to investigate the spatial distribution of density within the breast using 493 mammographic images from a sample of 165 premenopausal women (similar to 3 medio-lateral oblique views per woman).Methods Each breast image was divided into 48 regions and the PD for the whole breast ( overall PD) and for each one of its regions ( regional PD) was estimated. The spatial autocorrelation ( Moran's I value) of regional PD for each image was calculated to investigate spatial clustering of density, whether the degree of clustering varied between a woman's two breasts and whether it was affected by age and other known density correlates.Results The median Moran's / value for 165 women was 0.31 (interquartile range: 0.26, 0.37), indicating a clustered pattern. High-density areas tended to cluster in the central regions of the breast, regardless of the level of overall PD, but with considerable between-woman variability in regional PD. The degree of clustering was similar between a woman's two breasts (mean within-woman difference in Moran's / values between left and right breasts = 0.00 (95% confidence interval (CI) = -0.01, 0.01); P = 0.76) and did not change with aging (mean within-woman difference in I values between screens taken on average 8 years apart = 0.01 (95% CI = -0.01, 0.02); P = 0.30). Neither parity nor age at first birth affected the level of spatial autocorrelation of density, but increasing body mass index (BMI) was associated with a decrease in the degree of spatial clustering.Conclusions This study is the first to demonstrate that the distribution of radiodense tissue within the breast is spatially autocorrelated, generally with the high-density areas clustering in the central regions of the breast. The degree of clustering was similar within a woman's two breasts and between women, and was little affected by age or reproductive factors although it declined with increasing BMI

    Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis

    Get PDF
    In primary Sjogren syndrome (pSS), the function of the salivary glands is often considerably reduced. Multiple innate immune pathways are likely dysregulated in the salivary gland epithelium in pSS, including the nuclear factor-kappa B pathway, the inflammasome and interferon signalling. The ductal cells of the salivary gland in pSS are characteristically surrounded by a CD4(+) T cell-rich and B cell-rich infiltrate, implying a degree of communication between epithelial cells and immune cells. B cell infiltrates within the ducts can initiate the development of lymphoepithelial lesions, including basal ductal cell hyperplasia. Vice versa, the epithelium provides chronic activation signals to the glandular B cell fraction. This continuous stimulation might ultimately drive the development of mucosa-associated lymphoid tissue lymphoma. This Review discusses changes in the cells of the salivary gland epithelium in pSS (including acinar, ductal and progenitor cells), and the proposed interplay of these cells with environmental stimuli and the immune system. Current therapeutic options are insufficient to address both lymphocytic infiltration and salivary gland dysfunction. Successful rescue of salivary gland function in pSS will probably demand a multimodal therapeutic approach and an appreciation of the complicity of the salivary gland epithelium in the development of pSS. Salivary gland dysfunction is an important characteristic of primary Sjogren syndrome (pSS). In this Review, the authors discuss various epithelial abnormalities in pSS and the mechanisms by which epithelial cell-immune cell interactions contribute to disease development and progression

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    The use of animals in live-tissue trauma training and military medical research

    No full text
    corecore