342 research outputs found

    C-reactive protein and N-terminal pro-brain natriuretic peptide discrepancy: a differentiation of adenoviral pharyngoconjunctival fever from Kawasaki disease

    Get PDF
    PurposeTo differentiate adenoviral pharyngoconjunctival fever (PCF) from acute Kawasaki disease (KD) using laboratory tests before results of virus-real time polymerase chain reaction and ophthalmologic examination are obtained.MethodsBaseline patient characteristics and laboratory measurements were compared between 40 patients with adenovirus infection and 123 patients with KD.ResultsThe patients with adenovirus infection were generally older than those with KD (median: 3.9 years vs. 2 years, P=0.000). White blood cell and, platelet count, and aspartate aminotransferase, alanine aminotransferase, and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels showed significant differences between the 2 groups, but the C-reactive protein (CRP) levels did not (6.8±3.0 mg/dL vs. 8.3±5.8 mg/dL, P=0.126). In the adenovirus infection group, the CRP levels were <1, <3, <10, and ≥10 mg/dL in 2 (5%), 3 (7.5%), 30 (75%), and 5 patients (12.5%), respectively. The cutoff NT-proBNP level was 265 pg/mL. Discrepancy was defined as CRP and NT-proBNP levels of ≥3 or <3 mg/dL, and <265 or ≥265 pg/mL, respectively. Among the 35 patients with adenovirus infection whose CRP levels were ≥3 mg/dL, 29 (82.9%) showed a discrepancy. Conversely, of the 103 patients with KD whose CRP levels were ≥3 mg/dL, 83 (80.6%) showed no discrepancy. Between the groups, a significant difference in discrepancy rate was observed (P=0.000). None of the patients with adenovirus infection had CRP and NT-proBNP levels of <3 mg/dL and ≥265 pg/mL, respectively.ConclusionWith a sensitivity of 82.9% and a specificity of 80.6%, CRP and NT-proBNP levels may differentiate between adenoviral PCF and acute KD

    A childhood case of spinal tuberculosis misdiagnosed as muscular dystrophy

    Get PDF
    Tuberculosis is primarily a pulmonary disease, but extra-pulmonary manifestations are not uncommon, especially in children and adolescents. Ten percent of extra pulmonary tuberculosis localizes to the bones and joints, and 56% of such cases affect the spine. We treated a childhood case of spinal tuberculosis misdiagnosed as muscular dystrophy in a patient without specific constitutional symptoms. We report this case because the patient had an unusual presentation of spinal tuberculosis

    Misdiagnosis of fetus-in-fetu as meconium peritonitis

    Get PDF
    Fetus-in-fetu (FIF) is a rare congenital condition in which a fetiform mass is detected in the host abdomen and also in other sites such as the intracranium, thorax, head, and neck. This condition has been rarely reported in the literature. Herein, we report the case of a fetus presenting with abdominal cystic mass and ascites and prenatally diagnosed as meconium pseudocyst. Explorative laparotomy revealed an irregular fetiform mass in the retroperitoneum within a fluid-filled cyst. The mass contained intestinal tract, liver, pancreas, and finger. Fetal abdominal cystic mass has been identified in a broad spectrum of diseases. However, as in our case, FIF is often overlooked during differential diagnosis. FIF should also be differentiated from other conditions associated with fetal abdominal masses

    The ID1-CULLIN3 Axis Regulates Intracellular SHH and WNT Signaling in Glioblastoma Stem Cells

    Get PDF
    SummaryInhibitor of differentiation 1 (ID1) is highly expressed in glioblastoma stem cells (GSCs). However, the regulatory mechanism responsible for its role in GSCs is poorly understood. Here, we report that ID1 activates GSC proliferation, self-renewal, and tumorigenicity by suppressing CULLIN3 ubiquitin ligase. ID1 induces cell proliferation through increase of CYCLIN E, a target molecule of CULLIN3. ID1 overexpression or CULLIN3 knockdown confers GSC features and tumorigenicity to murine Ink4a/Arf-deficient astrocytes. Proteomics analysis revealed that CULLIN3 interacts with GLI2 and DVL2 and induces their degradation via ubiquitination. Consistent with ID1 knockdown or CULLIN3 overexpression in human GSCs, pharmacologically combined control of GLI2 and β-CATENIN effectively diminishes GSC properties. A ID1-high/CULLIN3-low expression signature correlates with a poor patient prognosis, supporting the clinical relevance of this signaling axis. Taken together, a loss of CULLIN3 represents a common signaling node for controlling the activity of intracellular WNT and SHH signaling pathways mediated by ID1
    corecore