9 research outputs found

    Impact performance of steel-concrete-steel sandwich structures

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Behavior of steel-concrete-steel sandwich structures with lightweight cement composite and novel shear connectors

    Get PDF
    10.1016/j.compstruct.2012.05.023Composite Structures94123500-350

    Differential Response of Sugar Beet to Long-Term Mild to Severe Salinity in a Soil-Pot Culture

    Get PDF
    Attempts to cultivate sugar beet (Beta vulgaris spp. vulgaris) in the sub-tropical saline soils are ongoing because of its excellent tolerance to salinity. However, the intrinsic adaptive physiology has not been discovered yet in the sub-tropical climatic conditions. In this study, we investigated morpho-physiological attributes, biochemical responses, and yield of sugar beet under a gradient of salinity in the soil-pot culture system to evaluate its adaptive mechanisms. Results exhibited that low and high salinity displayed a differential impact on growth, photosynthesis, and yield. Low to moderate salt stress (75 and 100 mM NaCl) showed no inhibition on growth and photosynthetic attributes. Accordingly, low salinity displayed simulative effect on chlorophyll and antioxidant enzymes activity which contributed to maintaining a balanced H2O2 accumulation and lipid peroxidation. Furthermore, relative water and proline content showed no alteration in low salinity. These factors contributed to improving the yield (tuber weight). On the contrary, 250 mM salinity showed a mostly inhibitory role on growth, photosynthesis, and yield. Collectively, our findings provide insights into the mild-moderate salt adaptation strategy in the soil culture test attributed to increased water content, elevation of photosynthetic pigment, better photosynthesis, and better management of oxidative stress. Therefore, cultivation of sugar beet in moderately saline-affected soils will ensure efficient utilization of lands

    Impact behaviour of steel-composite sandwich beams

    No full text
    Master'sMASTER OF ENGINEERIN

    The Effect of Strengthening Methods on the Performance of Reinforced Concrete Columns against Vehicle Impact

    No full text
    Columns at the ground floor and parking garages that could be hit by a car pose a significant risk to the structural stability of the building superstructures. Generally, these columns are not built to sustain the lateral impact force generated by car–column collision. In this study, the performance of axially loaded retrofitted reinforced concrete (RC) columns against car impact is evaluated using finite element (FE) simulation. The FE model of the RC column with axial load was validated with experimental results. For the car-crushing simulations, two SUV car models with a mass of about 2250 kg, which had been experimentally validated, were used to simulate the car–column collision. The results of the FE analysis revealed that once the impact speed exceeds 30 km/h, the horizontal impact force has a significant effect on the column joint at the foundation. The impact force increases linearly as the impact velocity of the car increases up to 20 km/h. When car impact velocities are more than 20 km/h, the generated impact force increases in power to the car-crashing velocity. Both types of cars have almost the same effect on the generation of impact force and the lateral displacement of the column. It is found that the generated impact forces are higher than the recommended design values of Eurocode 1. To protect the column from car impact damage, two types of column-strengthening systems were investigated. One form of strengthening system involves retrofitting the lower half of the column with an aramid fiber-reinforced polymer (AFRP) warp, while the other involves putting a reinforced concrete jacket of up to 1.3 m in the height of the column. Based on the comparative study, design recommendations are suggested to protect the RC column from accidental car-crashing damage

    Numerical modelling of lightweight Steel-Concrete-Steel sandwich composite beams subjected to impact

    No full text
    10.1016/j.tws.2015.04.001Thin-Walled Structures94135-14

    Flexural Strengthening of Stone Masonry Walls Using Textile-Reinforced Sarooj Mortar

    No full text
    The majority of historical buildings and structures in Oman were built using unreinforced stone masonry. These structures have deteriorated due to ageing of materials, environmental degradation, and lack of maintenance. This research investigates the physical, chemical, and mechanical properties of local building materials and the results of an experimental study on the out-of-plane bending effectiveness of an innovative strengthening method applied to existing masonry walls. The technique consists of the application of a basalt textile-reinforced sarooj mortar (TRM) on one face of the walls. Bending tests of masonry wall samples (1000 mm width, 2000 mm height, and 350 mm depth) were carried out on one unreinforced specimen and three different cases of reinforced specimens. The performance of unreinforced and reinforced specimens was analyzed and compared. The strengthened specimens were able to resist moments of out-of-plane bending 2.5 to 3 times greater than those of unreinforced specimen (160–233% increase). Moreover, the strengthened walls were able to sustain higher deformations (deflections) than the unreinforced specimen ranging from 20 to 130%. The results showed that using TRM was effective for the out-of-plane strengthening of stone masonry using a local material (sarooj) that is compatible with existing stone masonry building materials

    FLEXURAL BEHAVIOR OF FRP BARS AFTER BEING EXPOSED TO ELEVATED TEMPERATURES

    No full text
    This research study investigates the flexural behavior of fiber reinforced polymer (FRP) bars after being subjected to different levels of elevated temperatures (100, 200 and 300°C). Three types of glass FRP bars (ribbed, sand coated, and helically wrapped) and one type of carbon FRP bars (sand coated) were used in this study. Two testing scenarios were used: a) testing specimens immediately after heating and b) keeping specimens to cool down before testing. Test results showed that as the temperature increased the flexural strength and modulus of the tested FRP bars decreased. At temperatures higher than the glass transition temperature (Tg), significant flexural strength and modulus losses were recorded. Smaller diameter bars showed better residual flexural strength and modulus than larger diameter bars. The immediately tested bars showed significant strength and modulus losses compared to bars tested after cooling. Different types of GFRP bars showed comparable results. However, the helically wrapped bars showed the highest flexural strength losses (37 and 60%) while the sand coated bars showed the lowest losses (29 and 39%) after exposure to 200 and 300℃, respectively. The carbon FRP bars showed residual flexural strengths comparable to those recorded for the GFRP bars; however, they showed lower residual flexural modulus after being subjected to 200 and 300℃
    corecore