3,142 research outputs found

    First principles investigation of ferroelectricity in epitaxially strained Pb2_2TiO4_4

    Full text link
    The structure and polarization of the as-yet hypothetical Ruddlesden-Popper compound Pb2_2TiO4_4 are investigated within density-functional theory. Zone enter phonons of the high-symmetry K2_2NiF4_4-type reference structure, space group I4/mmmI4/mmm, were calculated. At the theoretical ground-state lattice constants, there is one unstable infrared-active phonon. This phonon freezes in to give the I2mmI2mm ferroelectric state. As a function of epitaxial strain, two additional ferroelectric phases are found, with space groups I4mmI4mm and F2mmF2mm at compressive and tensile strains, respectively.Comment: 4 pages, 4 figure

    Ground state magnetic structure of Mn3_3Ge

    Full text link
    We have used spherical neutron polarimetry to investigate the magnetic structure of the Mn spins in the hexagonal semimetal Mn3_3Ge, which exhibits a large intrinsic anomalous Hall effect. Our analysis of the polarimetric data finds a strong preference for a spin structure with E1gE_{1g} symmetry relative to the D6hD_{6h} point group. We show that weak ferromagnetism is an inevitable consequence of the symmetry of the observed magnetic structure, and that sixth order anisotropy is needed to select a unique ground state

    A model for spin-polarized transport in perovskite manganite bi-crystal grain boundaries

    Full text link
    We have studied the temperature dependence of low-field magnetoresistance and current-voltage characteristics of a low-angle bi-crystal grain boundary junction in perovskite manganite La_{2/3}Sr_{1/3}MnO_3 thin film. By gradually trimming the junction we have been able to reveal the non-linear behavior of the latter. With the use of the relation M_{GB} \propto M_{bulk}\sqrt{MR^*} we have extracted the grain boundary magnetization. Further, we demonstrate that the built-in potential barrier of the grain boundary can be modelled by V_{bi}\propto M_{bulk}^2 - M_{GB}^2. Thus our model connects the magnetoresistance with the potential barrier at the grain boundary region. The results indicate that the band-bending at the grain boundary interface has a magnetic origin.Comment: 9 pages, 5 figure

    Characterization of a Plain Broadband Textile PIFA

    Get PDF
    Bandwidth characteristic of a wearable antenna is one of the major factors in determining its usability on the human body. In this work, a planar inverted-F antenna (PIFA) structure is proposed to achieve a large bandwidth to avoid serious antenna reflection coefficient detuning when placed in proximity of the body. The proposed structure is designed based on a simple structure, in order to provide practicality in application and maintain fabrication simplicity. Two different types of conductive textiles, namely Pure Copper Polyester Taffeta Fabric (PCPTF) and ShieldIt, are used in order to proof its concept, in comparison with a metallic antenna made from copper foil. The design is spaced and fabricated using a 6 mm thick fleece fabric. To cater for potential fabrication and material measurement inaccuracies, both antennas' performance are also investigated and analyzed with varying physical and material parameters. From this investigation, it is found that the proposed structure's extended bandwidth enabled the antenna to function with satisfactory on-body reflection coefficients, despite unavoidable gain and efficiency reduction

    Renormalized Thermodynamic Entropy of Black Holes in Higher Dimensions

    Get PDF
    We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstr\"{o}m black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon.Comment: Final Revision Form as to be published in Physical Review D, ReVTeX, No Figure

    Fermi-level alignment at metal-carbon nanotube interfaces: application to scanning tunneling spectroscopy

    Full text link
    At any metal-carbon nanotube interface there is charge transfer and the induced interfacial field determines the position of the carbon nanotube band structure relative to the metal Fermi-level. In the case of a single-wall carbon nanotube (SWNT) supported on a gold substrate, we show that the charge transfers induce a local electrostatic potential perturbation which gives rise to the observed Fermi-level shift in scanning tunneling spectroscopy (STS) measurements. We also discuss the relevance of this study to recent experiments on carbon nanotube transistors and argue that the Fermi-level alignment will be different for carbon nanotube transistors with low resistance and high resistance contacts.Comment: 4 pages, 3 ps figures, minor corrections, accepted by Phys. Rev. Let

    The effective action of (2+1)-dimensional QED: the effect of finite fermion density

    Full text link
    The effective action of (2+1)-dimensional QED with finite fermion density is calculated in a uniform electromagnetic field. It is shown that the integer quantum Hall effect and de Haas-van Alphen like phenomena in condensed matter physics are derived directly from the effective action.Comment: 10 pages, Revtex, No figure
    • …
    corecore