13 research outputs found

    Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV

    Get PDF
    Cataloged from PDF version of article.We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit voltage, short circuit current, fill factor, and solar conversion efficiency in the ultraviolet. Hybridizing (CdSe) ZnS core-shell quantum dots of 2.4 nm in diameter on multi-crystalline Si solar cells for the first time, we show that the solar conversion efficiency is enhanced 2 folds under white light illumination similar to the solar spectrum. Such nanocrystal scintillators provide the ability to extend the photovoltaic activity towards UV. (c) 2008 Optical Society of America

    Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity

    Get PDF
    Cataloged from PDF version of article.Using metallic nanoislands, we demonstrate the localized plasmonic control and modification of the spontaneous emission from closely-packed nanocrystal emitters, leading to significant changes in their collective emission characteristics tuned spectrally and spatially by plasmon coupling. Using randomly-distributed silver nanoislands, we show that the emission linewidth of proximal CdSe/ZnS core-shell quantum dots is reduced by 22% and their peak emission wavelength is shifted by 14nm, while their ensemble photoluminescence is enhanced via radiative energy transfer by 21.6 and 15.1 times compared to the control groups of CdSe/ZnS nanocrystals with identical nano-silver but no dielectric spacer and the same nanocrystals alone, respectively. (C) 2007 Optical Society of America

    Integrated phased-array 1×16 photonic switch for WDM optical packet switching application Citation for published version (APA):). Integrated phased-array 1×16 photonic switch for WDM optical packet switching application. In Integrated Phased-Array 1x16 Ph

    No full text
    Abstract: Integrated InP/InGaAsP phased-array 1x16 optical switch is fabricated and characterized for broadband WDM optical packet switching. Wavelength-insensitive operation covering the C-band and penalty-free transmission of 40-Gbps signal are demonstrated

    Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range

    No full text
    Cataloged from PDF version of article.We propose and demonstrate photocatalytic hybrid nanocomposites that co-integrate TiO(2) and ZnO nanoparticles in the same host resin to substantially enhance their combined photocatalytic activity in the near-UV and visible spectral ranges, where the intrinsic photocatalytic activity of TiO2 nanoparticles or that of ZnO nanoparticles is individually considerably weak For a comparative study, by embedding TiO(2) nanoparticles of ca. 6 nm and ZnO nanoparticles of ca. 40 nm in the sol-gel matrix of acrylic resin, we make thin film coatings of TiO(2)-ZnO nanoparticles (combination of TiO2 and ZnO, each with a mass ratio of 8.5%), as well as the composite films of TiO(2) nanoparticles alone (17.0%), and ZnO nanoparticles alone (17.0%), and a negative control group with no nanoparticles. For all of these thin films coated on polyvinyl chloride (PVC) polyester, we experimentally study photocatalytic activity and systematically measure spectral degradation (recovery obtained by photocatalytic reactions). This spectral characterization exhibits photodegradation levels of the contaminant at different excitation wavelengths (in the range of 310-469 nm) to distinguish different parts of optical spectrum where TiO(2) and ZnO nanopartides are individually and concurrently active. We observe that the photocatalytic activity is significantly improved towards the visible range with the use of TiO(2)-ZnO combination compared to the individual cases. Particularly for the excitation wavelengths of photochemical reactions longer than 400 nm, where the negative control group and ZnO nanoparticles alone yield no observable photodegradation level and TiO2 nanoparticles alone lead to a low photodegradation level of 14%, the synergic combination of TiO(2)-ZnO nanoparticles achieves a photodegradation level as high as 30%. Investigating their scanning electron microscopy (SEM), X-ray diffraction (XRD), and high resolution transmission electron microscopy (HRTEM), we present evidence of the heterostructure, crystallography, and chemical bonding states for the hybrid TiO(2)-ZnO nanocomposite films, in comparison to the films of only TiO(2) nanoparticles, only ZnO nanoparticles, and no nanoparticles. (C) 2011 Elsevier B.V. All rights reserved
    corecore