156 research outputs found
Communication in bacteria: an ecological and evolutionary perspective
Individual bacteria can alter their behaviour through chemical interactions between organisms in microbial communities - this is generally referred to as quorum sensing. Frequently, these interactions are interpreted in terms of communication to mediate coordinated, multicellular behaviour. We show that the nature of interactions through quorum-sensing chemicals does not simply involve cooperative signals, but entails other interactions such as cues and chemical manipulations. These signals might have a role in conflicts within and between species. The nature of the chemical interaction is important to take into account when studying why and how bacteria react to the chemical substances that are produced by other bacteria
Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus
In Myxococcus xanthus morphogenetic cell movements constitute the basis for the formation of spreading vegetative colonies and fruiting bodies in starving cells. M. xanthus cells move by gliding and gliding motility depends on two polarly localized engines, type IV pili pull cells forward, and slime extruding nozzle-like structures appear to push cells forward. The motility behaviour of cells provides evidence that the two engines are localized to opposite poles and that they undergo polarity switching. Several proteins involved in regulating polarity switching have been identified. The cell surface-associated C-signal induces the directed movement of cells into nascent fruiting bodies. Recently, the molecular nature of the C-signal molecule was elucidated and the motility parameters regulated by the C-signal were identified. From the effect of the C-signal on cell behaviour it appears that the C-signal inhibits polarity switching of the two motility engines. This establishes a connection between cell polarity, signalling by an intercellular signal and morphogenetic cell movements during fruiting body formation
Stably bridging a great divide: localization of the SpoIIQ landmark protein in Bacillus subtilis
Many bacterial proteins involved in fundamental processes such as cell shape maintenance, cell cycle regulation, differentiation, division and motility localize dynamically to specific subcellular regions. However, the mechanisms underlying dynamic protein localization are incompletely understood. Using the SpoIIQ protein in Bacillus subtilis as a case study, two reports present important novel insights into how a protein finds its right place at the right time and remains stably bound. During sporulation, SpoIIQ localizes in clusters in the forespore membrane at the interface that separates the forespore and mother cell and functions as a landmark protein for SpoIIIAH in the mother cell membrane. The extracellular domains of SpoIIQ and SpoIIIAH interact directly effectively bridging the gap between the two membranes. Here, SpoIIQ localization is shown to depend on two pathways, one involves SpoIIIAH, the second involves two peptidoglycan-degrading enzymes SpoIIP and SpoIID; and, SpoIIQ is only delocalized in the absence of all three proteins. Importantly, in the absence of SpoIIIAH, SpoIIQ apparently localizes normally. However, FRAP experiments demonstrated that SpoIIQ is not stably maintained in the clusters in this mutant. Thus, a second targeting pathway can mask significant changes in the localization of a protein
Pattern formation: fruiting body morphogenesis in Myxococcus xanthus
When Myxococcus xanthus cells are exposed to starvation, they respond with dramatic behavioral changes. The expansive swarming behavior stops and the cells begin to aggregate into multicellular fruiting bodies. The cell-surface-associated C-signal has been identified as the signal that induces aggregation. Recently, several of the components in the C-signal transduction pathway have been identified and behavioral analyses are beginning to reveal how the C-signal modulates cell behavior. Together, these findings provide a framework for understanding how a cell-surface-associated morphogen induces pattern formation
Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus
In response to starvation, an unstructured population of identical Myxococcus xanthus cells rearranges into an asymmetric, stable pattern of multicellular fruiting bodies. Central to this pattern formation process are changes in organized cell movements from swarming to aggregation. Aggregation is induced by the cell surf ace-associated C-signal. To understand how aggregation is accomplished, we have analyzed how C-signal modulates cell behavior. We show that C-signal induces a motility response that includes increases in transient gilding speeds and in the duration of gliding intervals and decreases in stop and reversal frequencies. This response results in a switch in cell behavior from an oscillatory to a unidirectional type of behavior in which the net-distance traveled by a cell per minute is increased. We propose that the C-signal-dependent regulation of the reversal frequency is essential for aggregation and that the remaining C-signal-dependent changes in motility parameters contribute to aggregation by increasing the net-distance traveled by starving cells per minute. In our model for symmetry-breaking and aggregation, C-signal transmission is a local event involving direct contacts between cells that results in a global organization of cells. This pattern formation mechanism does not require a diffusible substance or other actions at a distance. Rather it depends on contact-induced changes in motility behavior to direct cells appropriately
Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus
Formation of spatial patterns of cells from a mass of initially identical cells is a recurring theme in developmental biology, The dynamics that direct pattern formation in biological systems often involve morphogenetic cell movements. An example is fruiting body formation in the gliding bacterium Myxococcus xanthus in which an unstructured population of identical cells rearranges into an asymmetric, stable pattern of multicellular fruiting bodies in response to starvation. Fruiting body formation depends on changes in organized cell movements from swarming to aggregation. The aggregation process is induced and orchestrated by the cell-surface associated 17 kDa C-signal protein. C-signal transmission depends on direct contact between cells. Evidence suggests that C-signal transmission is geometrically constrained to cell ends and that productive C-signal transmission only occurs when cells engage in end-to-end contacts. Here, we review recent progress in the understanding of the pattern formation process that leads to fruiting body formation. Gliding motility in M xanthus involves two polarly localized gliding machines, the S-machine depends on type IV pili and the A-machine seems to involve a slime extrusion mechanism. Using time-lapse video microscopy the gliding motility parameters controlled by the C-signal have been identified. The C-signal induces cells to move with increased gliding speeds, in longer gliding intervals and with decreased stop and reversal frequencies. The combined effect of the C-signal dependent changes in gliding motility behaviour is an increase in the net-distance travelled by a cell per minute. The identification of the motility parameters controlled by the C-signal in combination with the contact-dependent C-signal transmission mechanism have allowed the generation of a qualitative model for C-signal induced aggregation. In this model, the directive properties of the C-signal are a direct consequence of the contact-dependent signal-transmission mechanism, which is a local event involving direct contact between cells that results in a global organization of cells. This pattern formation process does not depend on a diffusible substance. Rather it depends on a cell-surface associated signal to direct the cells appropriately. (C) 2003 Elsevier B.V. All rights reserved
- …