4 research outputs found

    Multimodal Chemical Imaging of Amyloid Plaque Polymorphism Reveals Aβ Aggregation Dependent Anionic Lipid Accumulations and Metabolism

    No full text
    Amyloid plaque formation constitutes one of the main pathological hallmarks of Alzheimer’s disease (AD) and is suggested to be a critical factor driving disease pathogenesis. Interestingly, in patients that display amyloid pathology but remain cognitively normal, Aβ deposits are predominantly of diffuse morphology suggesting that cored plaque formation is primarily associated with cognitive deterioration and AD pathogenesis. Little is known about the molecular mechanism responsible for conversion of monomeric Aβ into neurotoxic aggregates and the predominantly cored deposits observed in AD. The structural diversity among Aβ plaques, including cored/compact- and diffuse, may be linked to their distinct Aβ profile and other chemical species including neuronal lipids. We developed a novel, chemical imaging paradigm combining matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) and fluorescent amyloid staining. This multimodal imaging approach was used to probe the lipid chemistry associated with structural plaque heterogeneity in transgenic AD mice (tgAPP<sub>Swe</sub>) and was correlated to Aβ profiles determined by subsequent laser microdissection and immunoprecipitation-mass spectrometry. Multivariate image analysis revealed an inverse localization of ceramides and their matching metabolites to diffuse and cored structures within single plaques, respectively. Moreover, phosphatidylinositols implicated in AD pathogenesis, were found to localize to the diffuse Aβ structures and correlate with Aβ1–42. Further, lysophospholipids implicated in neuroinflammation were increased in all Aβ deposits. The results support previous clinical findings on the importance of lipid disturbances in AD pathophysiology and associated sphingolipid processing. These data highlight the potential of multimodal imaging as a powerful technology to probe neuropathological mechanisms

    Divergent Age-Dependent Conformational Rearrangement within Aβ Amyloid Deposits in APP23, APPPS1, and <i>App</i><sup><i>NL‑F</i></sup> Mice

    No full text
    Amyloid plaques composed of fibrils of misfolded Aβ peptides are pathological hallmarks of Alzheimer’s disease (AD). Aβ fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of Aβ fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how Aβ fibril structures in situ differ in Aβ plaque of different mouse models expressing familial mutations in the AβPP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and Aβ-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and AppNL‑F have different fibril structures within Aβ-amyloid plaques depending on the AβPP-processing genotype. Co-staining with Aβ-specific antibodies showed that individual plaques from APP23 mice expressing AβPP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact Aβ40 fibrils, and the corona region is dominated by diffusely packed Aβ40 fibrils. Conversely, the AβPP knock-in mouse AppNL‑F, expressing the AβPP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact Aβ42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by Aβ40 and was hence minuscule in AppNL‑F. These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules

    Evidence for Age-Dependent <i>in Vivo</i> Conformational Rearrangement within Aβ Amyloid Deposits

    No full text
    Deposition of aggregated Aβ peptide in the brain is one of the major hallmarks of Alzheimer’s disease. Using a combination of two structurally different, but related, hypersensitive fluorescent amyloid markers, LCOs, reporting on separate ultrastructural elements, we show that conformational rearrangement occurs within Aβ plaques of transgenic mouse models as the animals age. This important mechanistic insight should aid the design and evaluation of experiments currently using plaque load as readout

    Evidence for Age-Dependent <i>in Vivo</i> Conformational Rearrangement within Aβ Amyloid Deposits

    No full text
    Deposition of aggregated Aβ peptide in the brain is one of the major hallmarks of Alzheimer’s disease. Using a combination of two structurally different, but related, hypersensitive fluorescent amyloid markers, LCOs, reporting on separate ultrastructural elements, we show that conformational rearrangement occurs within Aβ plaques of transgenic mouse models as the animals age. This important mechanistic insight should aid the design and evaluation of experiments currently using plaque load as readout
    corecore