4 research outputs found

    Alumina recovery from industrial waste: study on the thermal, tensile and wear properties of polypropylene/alumina nanocomposites

    Get PDF
    The investigation on the influences of alumina (Al2O3) particles in nano-sized retrieved from Aluminium (Al) dross was conducted on the tensile, thermal and wear properties of polypropylene (PP) composites. The thermal decomposition method was used to synthesise the micro α-Al2O3 particles from Al-dross, was followed by the wet-milling method to produce the nano α-Al2O3. The PP composites (nano and micro α-Al2O3 particles) were prepared via melt compounding followed by compression molding. The coupling agent was also added to facilitate the particle dispersion. The tensile tests showed the maximum tensile strength and Young’s modulus of both composites to be corresponding to the samples containing 5 wt% of α-Al2O3. The superiority of nano α-Al2O3 on improving the property of PP had also been evident in the abrasive wear performance. A small amount of α-Al2O3 had been adequate in enhancing the thermal stability of PP than that of neat PP. The study on tensile and worn surface with SEM had revealed better adhesion and interaction between the filler and matrix in composites that were treated with coupling agent. The recovery of nano α-Al2O3 particles from Al-dross potentially decreases the quantity of harmful solid waste and can be an effective alternative filler for thermoplastics

    Effect of coupling agent on mechanical properties of composite from microcrystalline cellulose and recycled polypropylene

    No full text
    This study shows the effect of using 3-aminopropyltriethoxysilane (APS) and maleic anhydride-grafted polypropylene (MAPP) as coupling agent on composite of RPP/MCC fiber. The compositions of MCC were varied from 0, 2, 4, 8 and 12 wt%. The compounded samples were prepared into test specimens by using injection moulding. The RPP/MCC composites with and without the coupling agent were characterized through mechanical testing of flexural and impact test. The incorporation of the modified MCC was found to increase the modulus and flexural strength. The flexural test indicates that the addition of 4 wt% MCC-APS and 8 wt% MCC-MAPP significantly increased the flexural strength of the RPP composite compared to the unmodified MCC. The impact test shows higher impact strength at 4 wt% of RPP/MCC-APS and 2 wt% of RPP/MCC-MAPP, respectivel

    Effect of dispersants on microstructures of nano alpha alumina developed from aluminium dross waste

    No full text
    This paper compares the effect of dispersants which are Sodium Laureth Sulfate (SLS)and distilled water (DW) on the crystallization, particle size distribution and morphological behavior of nano alpha Alumina (α-Al2O3) synthesized from Aluminium (Al) dross waste. The synthesizing of nano α-Al2O3 via wet milling method was performed using a planetary mill for 4 hours at a speed of 550 rpm. The nano α-Al2O3 powders with dispersants were characterized with xray diffraction (XRD), particle size analyzer (PSA) and transmission electron microscopy (TEM). XRD analysis shows the broadening and shifting of peaks after the sample was calcined at 1300 ̊C,indicating high crystallinity. The crystallite size of α-Al2O3 milled with SLS is also smaller than the α-Al2O3 milled with DW. These results are consistent with the PSA analysis in which the graphs displayed a symmetrical trend. Then, the PSA analysis is validated with TEM observation up to 100000x magnification, particularly for α-Al2O3 milled with SLS

    Abstracts of the International Halal Science Conference 2023

    No full text
    This book presents the extended abstracts of the selected contributions to the International Halal Science Conference, held on 22-23 August 2023 by the International Institute for Halal Research and Training (INHART), IIUM, Malaysia in collaboration with Halalan Thayyiban Research Centre, University Islam Sultan Sharif (UNISSA), Brunei Darussalam. With the increasing global interest in halal products and services, this conference is timely. Conference Title:  International Halal Science ConferenceConference Acronym: IHASC23Conference Theme: Halal Industry Sustainability Through ScienceConference Date: 22-23 August 2023Conference Venue: International Islamic University (IIUM), MalaysiaConference Organizer: International Institute for Halal Research and Training (INHART), International Islamic University (IIUM), Malaysi
    corecore