75 research outputs found

    The Molecular Chaperone Hsp90α Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse

    Get PDF
    The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90β. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90β die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90β levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects

    Chemistry and biology of resorcylic acid lactones

    No full text
    While resorcylic acid lactones (RALs) have been known for a long time, the more recent discoveries that radicicol is a potent and selective HSP90 inhibitor while other members such as hypothemycin, LL-Z1640-2 and LL-783,277 are potent kinase inhibitors have stimulated a renewed interest in this family of natural products. The recent developments regarding the chemistry and biology of RALs are reviewed

    Picture Perfect: DNA-Templated Photoaffinity Labeling

    No full text
    Just so far apart and no further: Small molecules target ID by DNA tagging. Nucleic acid hybridization has been used to pair a photo-crosslinking group with a small molecule of interest. Following photoactivation, the protein(s) interacting with the small molecule are covalently linked to a nucleic acid tag

    PNA as a Biosupramolecular Tag for Programmable Assemblies and Reactions

    No full text
    The programmability of oligonucleotide hybridization offers an attractive platform for the design of assemblies with emergent properties or functions. Developments in DNA nanotechnologies have transformed our thinking about the applications of nucleic acids. Progress from designed assemblies to functional outputs will continue to benefit from functionalities added to the nucleic acids that can participate in reactions or interactions beyond hybridization. In that respect, peptide nucleic acids (PNAs) are interesting because they combine the hybridization properties of DNA with the modularity of peptides. In fact, PNAs form more stable duplexes with DNA or RNA than the corresponding natural homoduplexes. The high stability achieved with shorter oligomers (an 8-mer is sufficient for a stable duplex at room temperature) typically results in very high sequence fidelity in the hybridization with negligible impact of the ionic strength of the buffer due to the lack of electrostatic repulsion between the duplex strands. The simple peptidic backbone of PNA has been shown to be tolerant of modifications with substitutions that further enhance the duplex stability while providing opportunities for functionalization. Moreover, the metabolic stability of PNAs facilitates their integration into systems that interface with biology. Over the past decade, there has been a growing interest in using PNAs as biosupramolecular tags to program assemblies and reactions. A series of robust templated reactions have been developed with functionalized PNA. These reactions can be used to translate DNA templates into functional polymers of unprecedented complexity, fluorescent outputs, or bioactive small molecules. Furthermore, cellular nucleic acids (mRNA or miRNA) have been harnessed to promote assemblies and reactions in live cells. The tolerance of PNA synthesis also lends itself to the encoding of small molecules that can be further assembled on the basis of their nucleic acid sequences. It is now well-established that hybridization-based assemblies displaying two or more ligands can interact synergistically with a target biomolecule. These assemblies have now been shown to be functional in vivo. Similarly, PNA-tagged macromolecules have been used to prepare bioactive assemblies and three-dimensional nanostructures. Several technologies based on DNA-templated synthesis of sequence-defined polymers or DNA-templated display of ligands have been shown to be compatible with reiterative cycles of selection/amplification starting with large libraries of DNA templates, bringing the power of in vitro evolution to synthetic molecules and offering the possibility of exploring uncharted molecular diversity space with unprecedented scope and speed

    Clickable peptide nucleic acids (cPNA) with tunable affinity

    No full text
    Peptide nucleic acids (PNAs) are functional analogues of natural oligonucleotides. Herein, we report the synthesis of PNAs bearing a triazole in lieu of the amide bond assembled using a “click” cycloaddition, their hybridization properties as well as the DNA-templated coupling of the azide and alkyne PNA fragments

    Molecular Editing of Kinase-Targeting Resorcylic Acid Lactones (RAL): Fluoroenone RAL

    No full text
    Molecular editing: The resorcylic acid lactones (RAL) are known small-molecule irreversible inhibitors of select kinases, and represent a unique pharmacophore with potential for further development in kinase research. The basic pharmacophore was “edited” to improve the properties and to diversify the scaffold. Two fluoroenones were synthesized, and their preliminary biological evaluation revealed interesting activity

    Concise Synthesis of Pochonin A, an HSP90 Inhibitor

    No full text
    An expedient synthesis of (−)-pochonin A is reported (seven steps). This natural product is closely related to radicicol and was shown to be a 90 nM inhibitor of HSP90

    Diversity-oriented synthesis of novel polycyclic scaffolds using polymer-bound reagents

    No full text
    A concise sequence utilizing a Petasis three component reaction followed by a tandem aza-Cope–Mannich cyclization afforded novel polycyclic heterocycles in good yield; alternative iminium cyclization based on a Pictet–Spengler reaction or aminal formation led to divergent pathways affording skeletal diversity
    corecore