251 research outputs found
Consistent modeling of the geodetic precession in Earth rotation
A highly precise model for the motion of a rigid Earth is indispensable to
reveal the effects of non-rigidity in the rotation of the Earth from
observations. To meet the accuracy goal of modern theories of Earth rotation of
1 microarcsecond (muas) it is clear, that for such a model also relativistic
effects have to be taken into account. The largest of these effects is the so
called geodetic precession.
In this paper we will describe this effect and the standard procedure to deal
with it in modeling Earth rotation up to now. With our relativistic model of
Earth rotation Klioner et al. (2001) we are able to give a consistent
post-Newtonian treatment of the rotational motion of a rigid Earth in the
framework of General Relativity. Using this model we show that the currently
applied standard treatment of geodetic precession is not correct. The
inconsistency of the standard treatment leads to errors in all modern theories
of Earth rotation with a magnitude of up to 200 muas for a time span of one
century.Comment: 6 pages, 4 figures, 1 table, published in the Proceedings of the VII
Hotine-Marussi Symposium, Chapter 4
A note on the computation of geometrically defined relative velocities
We discuss some aspects about the computation of kinematic, spectroscopic,
Fermi and astrometric relative velocities that are geometrically defined in
general relativity. Mainly, we state that kinematic and spectroscopic relative
velocities only depend on the 4-velocities of the observer and the test
particle, unlike Fermi and astrometric relative velocities, that also depend on
the acceleration of the observer and the corresponding relative position of the
test particle, but only at the event of observation and not around it, as it
would be deduced, in principle, from the definition of these velocities.
Finally, we propose an open problem in general relativity that consists on
finding intrinsic expressions for Fermi and astrometric relative velocities
avoiding terms that involve the evolution of the relative position of the test
particle. For this purpose, the proofs given in this paper can serve as
inspiration.Comment: 8 pages, 2 figure
Units of relativistic time scales and associated quantities
This note suggests nomenclature for dealing with the units of various
astronomical quantities that are used with the relativistic time scales TT,
TDB, TCB and TCG. It is suggested to avoid wordings like "TDB units" and "TT
units" and avoid contrasting them to "SI units". The quantities intended for
use with TCG, TCB, TT or TDB should be called "TCG-compatible",
"TCB-compatible", "TT-compatible" or "TDB-compatible", respectively. The names
of the units second and meter for numerical values of all these quantities
should be used with out any adjectives. This suggestion comes from a special
discussion forum created within IAU Commission 52 "Relativity in Fundamental
Astronomy"
Comment on superluminality in general relativity
General relativity provides an appropriate framework for addressing the issue
of sub- or superluminality as an apparent effect. Even though a massless
particle travels on the light cone, its average velocity over a finite path
measured by different observers is not necessarily equal to the velocity of
light, as a consequence of the time dilation or contraction in gravitational
fields. This phenomenon occurs in either direction (increase or depletion)
irrespectively of the details and strength of the gravitational interaction.
Hence, it does not intrinsically guarantee superluminality, even when the
gravitational field is reinforced.Comment: 6 page
Dynamical constraints on some orbital and physical properties of the WD0137-349 A/B binary system
In this paper I deal with the WD0137-349 binary system consisting of a white
dwarf (WD) and a brown dwarf (BD) in a close circular orbit of about 116 min.
I, first, constrain the admissible range of values for the inclination i by
noting that, from looking for deviations from the third Kepler law, the
quadrupole mass moment Q would assume unlikely large values, incompatible with
zero at more than 1-sigma level for i 43 deg. Then, by
conservatively assuming that the most likely values for i are those that
prevent such an anomalous behavior of Q, i.e. those for which the third Kepler
law is an adequate modeling of the orbital period, I obtain i=39 +/- 2 deg.
Such a result is incompatible with the value i=35 deg quoted in literature by
more than 2 sigma. Conversely, it is shown that the white dwarf's mass range
obtained from spectroscopic measurements is compatible with my experimental
range, but not for i=35 deg. As a consequence, my estimate of yields an
orbital separation of a=(0.59 +/- 0.05)R_Sun and an equilibrium temperature of
BD of T_eq=(2087 +/- 154)K which differ by 10% and 4%, respectively, from the
corresponding values for i=35 deg.Comment: LaTex2e, 11 pages, 3 figures, no tables. It refers to gr-qc/0611126
and better clarify the result obtained there. Accepted by Astrophysics and
Space Scienc
The gravitational analogue to the hydrogen atom (A summer study at the borders of quantum mechanics and general relativity)
This article reports on a student summer project performed in 2006 at the
University of Frankfurt. It is addressed to undergraduate students familiar
with the basic principles of relativistic quantum mechanics and general
relativity. The aim of the project was to study the Dirac equation in curved
space time. To obtain the general relativistic Dirac equation we use the
formulation of gravity as a gauge theory in the first part. After these general
considerations we restrict the further discussion to the special case of the
Schwarzschild metric. This setting corresponds to the hydrogen atom, with the
electromagnetic field replaced by gravity. Although there is a singularity at
the event horizon it turns out that a regular solution of the time independent
Dirac equation exists. Finally the Dirac equation is solved numerically using
suitable boundary conditions.Comment: 19 pages, 3 figure
- …