54 research outputs found

    Catalytic dechlorination of diclofenac by biogenic palladium in a microbial electrolysis cell

    Get PDF
    Diclofenac is one of the most commonly detected pharmaceuticals in wastewater treatment plant (WWTP) effluents and the receiving water bodies. In this study, biogenic Pd nanoparticles (bio-Pd) were successfully applied in a microbial electrolysis cell (MEC) for the catalytic reduction of diclofenac. Hydrogen gas was produced in the cathodic compartment, and consumed as a hydrogen donor by the bio-Pd on the graphite electrodes. In this way, complete dechlorination of 1 mg diclofenac l-1 was achieved during batch recirculation experiments, whereas no significant removal was observed in the absence of the biocatalyst. The complete dechlorination of diclofenac was demonstrated by the concomitant production of 2-anilinophenylacetate (APA). Through the addition of -0.8 V to the circuit, continuous and complete removal of diclofenac was achieved in synthetic medium at a minimal HRT of 2 h. Continuous treatment of hospital WWTP effluent containing 1.28 mu g diclofenac l-1 resulted in a lower removal efficiency of 57%, which can probably be attributed to the affinity of other environmental constituents for the bio-Pd catalyst. Nevertheless, reductive catalysis coupled to sustainable hydrogen production in a MEC offers potential to lower the release of micropollutants from point-sources such as hospital WWTPs

    Flatfish fishery: impact & challenges

    Get PDF

    Alkaloids from marine fungi : promising antimicrobials

    Get PDF
    Resistance of pathogenic microorganisms against antimicrobials is a major threat to contemporary human society. It necessitates a perpetual influx of novel antimicrobial compounds. More specifically, Gram(-)pathogens emerged as the most exigent danger. In our continuing quest to search for novel antimicrobial molecules, alkaloids from marine fungi show great promise. However, current reports of such newly discovered alkaloids are often limited to cytotoxicity studies and, moreover, neglect to discuss the enigma of their biosynthesis. Yet, the latter is often a prerequisite to make them available through sufficiently efficient processes. This review aims to summarize novel alkaloids with promising antimicrobial properties discovered in the past five years and produced by marine fungi. Several discovery strategies are summarized, and knowledge gaps in biochemical production routes are identified. Finally, links between the structure of the newly discovered molecules and their activity are proposed. Since 2015, a total of 35 new antimicrobial alkaloids from marine fungi were identified, of which 22 showed an antibacterial activity against Gram(-)microorganisms. Eight of them can be classified as narrow-spectrum Gram(-)antibiotics. Despite this promising ratio of novel alkaloids active against Gram(-)microorganisms, the number of newly discovered antimicrobial alkaloids is low, due to the narrow spectrum of discovery protocols that are used and the fact that antimicrobial properties of newly discovered alkaloids are barely characterized. Alternatives are proposed in this review. In conclusion, this review summarizes novel findings on antimicrobial alkaloids from marine fungi, shows their potential as promising therapeutic candidates, and hints on how to further improve this potential

    Biogenic palladium enhances diatrizoate removal from hospital wastewater in a microbial electrolysis cell

    Get PDF
    decrease the load of pharmaceuticals to the environment, decentralized wastewater treatment has been proposed for important point-sources such as hospitals. In this study, a microbial electrolysis cell (MEC) was used for the dehalogenation of the iodinated X-ray contrast medium diatrizoate. The presence of biogenic palladium nanoparticles (bio-Pd) in the cathode significantly enhanced diatrizoate removal by direct electrochemical reduction and by reductive catalysis using the H(2) gas produced at the cathode of the MEC. Complete deiodination of 3.3 mu M (2 mg L(-1)) diatrizoate from a synthetic medium was achieved after 24 h of recirculation at an applied voltage of -0.4 V. An equimolar amount of the deiodinated metabolite 3,5-diacetamidobenzoate (DAB) was detected. Higher cell voltages increased the dehalogenation rates, resulting in a complete removal after 2 h at -0.8 V. At this cell Voltage, the MEC was also able to remove 85% of diatrizoate from hospital effluent containing 0.5 mu M (292 mu g L(-1)), after 24 h of recirculation. Complete removal was obtained when the effluent was continuously fed at a volumetric loading rate of 204 mg diatrizoate m(-3) total cathodic compartment (TCC) day(-1) to the MEC with a hydraulic retention time of 8 h. At -0.8 V, the MEC system could also eliminate 54% of diatrizoate from spiked urine during a 24 h recirculation experiment. The final product DAB was demonstrated to be removable by nitrifying biomass, which suggests that the combination of a MEC and bio-Pd in its cathode offers potential to dehalogenate pharmaceuticals, and to significantly lower the environmental burden of hospital waste streams
    corecore