381 research outputs found

    Rapid Disaster Analysis based on SAR Techniques

    Get PDF
    Due to all-day and all-weather capability spaceborne SAR is a valuable means for rapid mapping during and after disaster. In this paper, three change detection techniques based on SAR data are discussed: (1) initial coarse change detection, (2) flooded area detection, and (3) linear-feature change detection. The 2011 Tohoku Earthquake and Tsunami is used as case study, where earthquake and tsunami events provide a complex case for this study. In (1), pre- and post-event TerraSAR-X images are coregistered accurately to produce a false-color image. Such image provides a quick and rough overview of potential changes, which is useful for initial decision making and identifies areas worthwhile to be analysed further in more depth. In (2), the post-event TerraSAR-X image is used to extract the flooded area by morphological approaches. In (3), we are interested in detecting changes of linear shape as indicator for modified man-made objects. Morphological approaches, e.g. thresholding, simply extract pixel-based changes in the difference image. However, in this manner many irrelevant changes are highlighted, too (e.g., farming activity, speckle). In this study, Curvelet filtering is applied in the difference image not only to suppress false alarms but also to enhance the change signals of linear-feature form (e.g. buildings) in settlements. Afterwards, thresholding is conducted to extract linear-shaped changed areas. These three techniques mentioned above are designed to be simple and applicable in timely disaster analysis. They are all validated by comparing with the change map produced by Center for Satellite Based Crisis Information, DLR

    PERSISTENT SCATTERER AIDED FACADE LATTICE EXTRACTION IN SINGLE AIRBORNE OPTICAL OBLIQUE IMAGES

    Get PDF
    We present a new method to extract patterns of regular facade structures from single optical oblique images. To overcome the missing three-dimensional information we incorporate structural information derived from Persistent Scatter (PS) point cloud data into our method. Single oblique images and PS point clouds have never been combined before and offer promising insights into the compatibility of remotely sensed data of different kinds. Even though the appearance of facades is significantly different, many characteristics of the prominent patterns can be seen in both types of data and can be transferred across the sensor domains. To justify the extraction based on regular facade patterns we show that regular facades appear rather often in typical airborne oblique imagery of urban scenes. The extraction of regular patterns is based on well established tools like cross correlation and is extended by incorporating a module for estimating a window lattice model using a genetic algorithm. Among others the results of our approach can be used to derive a deeper understanding of the emergence of Persistent Scatterers and their fusion with optical imagery. To demonstrate the applicability of the approach we present a concept for data fusion aiming at facade lattices extraction in PS and optical data

    Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling

    Full text link
    Continuous wave ultraviolet (UV) laser irradiation at lambda=244 nm on the +z face of undoped and MgO doped congruent lithium niobate single crystals has been observed to inhibit ferroelectric domain inversion. The inhibition occurs directly beneath the illuminated regions, in a depth greater than 100 nm during subsequent electric field poling of the crystal. Domain inhibition was confirmed by both differential domain etching and piezoresponse force microscopy. This effect allows the formation of arbitrarily shaped domains in lithium niobate and forms the basis of a high spatial resolution micro-structuring approach when followed by chemical etching

    Highest weight categories arising from Khovanov's diagram algebra II: Koszulity

    Full text link
    This is the second of a series of four articles studying various generalisations of Khovanov's diagram algebra. In this article we develop the general theory of Khovanov's diagrammatically defined "projective functors" in our setting. As an application, we give a direct proof of the fact that the quasi-hereditary covers of generalised Khovanov algebras are Koszul.Comment: Minor changes, extra sections on Kostant modules and rigidity of cell modules adde

    Three-dimensionality of space and the quantum bit: an information-theoretic approach

    Full text link
    It is sometimes pointed out as a curiosity that the state space of quantum two-level systems, i.e. the qubit, and actual physical space are both three-dimensional and Euclidean. In this paper, we suggest an information-theoretic analysis of this relationship, by proving a particular mathematical result: suppose that physics takes place in d spatial dimensions, and that some events happen probabilistically (not assuming quantum theory in any way). Furthermore, suppose there are systems that carry "minimal amounts of direction information", interacting via some continuous reversible time evolution. We prove that this uniquely determines spatial dimension d=3 and quantum theory on two qubits (including entanglement and unitary time evolution), and that it allows observers to infer local spatial geometry from probability measurements.Comment: 13 + 22 pages, 9 figures. v4: some clarifications, in particular in Section V / Appendix C (added Example 39

    Associative and Spatial Relationships in Thesaurus-based Retrieval

    Get PDF
    The OASIS (Ontologically Augmented Spatial Information System) project explores terminology systems for thematic and spatial access in digital library applications. A prototype implementation uses data from the Royal Commission on the Ancient and Historical Monuments of Scotland, together with the Getty AAT and TGN thesauri. This paper describes its integrated spatial and thematic schema and discusses novel approaches to the application of thesauri in spatial and thematic semantic distance measures. Semantic distance measures can underpin interactive and automatic query expansion techniques by ranking lists of candidate terms. We first illustrate how hierarchical spatial relationships can be used to provide more flexible retrieval for queries incorporating place names in applications employing online gazetteers and geographical thesauri. We then employ a set of experimental scenarios to investigate key issues affecting use of the associative (RT) thesaurus relationships in semantic distance measures. Previous work has noted the potential of RTs in thesaurus search aids but the problem of increased noise in result sets has been emphasised. Specialising RTs allows the possibility of dynamically linking RT type to query context. Results presented in this paper demonstrate the potential for filtering on the context of the RT link and on subtypes of RT relationships

    Land subsidence hazard in iran revealed by country-scale analysis of sentinel-1 insar

    Get PDF
    Many areas across Iran are subject to land subsidence, a sign of exceeding stress due to the over-extraction of groundwater during the past decades. This paper uses a huge dataset of Sentinel-1, acquired since 2014 in 66 image frames of 250×250km, to identify and monitor land subsidence across Iran. Using a two-step time series analysis, we first identify subsidence zones at a medium scale of 100m across the country. For the first time, our results provide a comprehensive nationwide map of subsidence in Iran and recognize its spatial distribution and magnitude. Then, in the second step of analysis, we quantify the deformation time series at the highest possible resolution to study its impact on civil infrastructure. The results spots the hazard posed by land subsidence to different infrastructure. Examples of road and railways affected by land subsidence hazard in Tehran and Mashhad, two of the most populated cities in Iran, are presented in this study
    corecore