51 research outputs found

    Quantum algorithm for universal implementation of projective measurement of energy

    Get PDF
    A projective measurement of energy (PME) on a quantum system is a quantum measurement, determined by the Hamiltonian of the system. PME protocols exist when the Hamiltonian is given in advance. Unknown Hamiltonians can be identified by quantum tomography, but the time cost to achieve a given accuracy increases exponentially with the size of the quantum system. In this letter, we improve the time cost by adapting quantum phase estimation, an algorithm designed for computational problems, to measurements on physical systems. We present a PME protocol without quantum tomography for Hamiltonians whose dimension and energy scale are given but otherwise unknown. Our protocol implements a PME to arbitrary accuracy without any dimension dependence on its time cost. We also show that another computational quantum algorithm may be used for efficient estimation of the energy scale. These algorithms show that computational quantum algorithms have applications beyond their original context with suitable modifications.Comment: 4 pages with 9-page supplemental, 4 figures. Comments welcom
    corecore