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A projective measurement of energy (PME) on a quantum system is a quantum measurement determined
by the Hamiltonian of the system. PME protocols exist when the Hamiltonian is given in advance.
Unknown Hamiltonians can be identified by quantum tomography, but the time cost to achieve a given
accuracy increases exponentially with the size of the quantum system. In this Letter, we improve the time
cost by adapting quantum phase estimation, an algorithm designed for computational problems, to
measurements on physical systems. We present a PME protocol without quantum tomography for
Hamiltonians whose dimension and energy scale are given but which are otherwise unknown. Our protocol
implements a PME to arbitrary accuracy without any dimension dependence on its time cost. We also show
that another computational quantum algorithm may be used for efficient estimation of the energy scale.
These algorithms show that computational quantum algorithms, with suitable modifications, have
applications beyond their original context.
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Introduction.—The projective measurement of energy
(PME) is a quantum counterpart of an ideal energy
measurement in classical mechanics. A PME on a given
system sets the system to an energy eigenstate and returns
the corresponding energy eigenvalue. A PME alone has no
effect on a system already in an energy eigenstate; thus, by
repeating the same PME and observing that the outcomes
remain unchanged, it can be used to confirm that the system
remains in the initial energy eigenstate. These properties
make the PME suitable for detecting small effects on a
quantum system that is subject to an external influence such
as a gravity wave [1] or thermal fluctuation [2–4].
In practice, a device that implements a quantum meas-

urement must include a destructive component such as a
photon detector. The PME, a nondestructive measurement,
requires another quantum system as a “probe.” The system
(commonly referred to as the “target”) interacts with the
probe, and a direct measurement is performed only on the
probe after the interaction (Fig. 1).
An implementation protocol of PME is known for

systems for which the Hamiltonian H is given in advance
[5]. The protocol chooses the interaction between the probe
and target according to H, so that the two quantum systems
are appropriately entangled. The entanglement ensures that
the measurement on the probe sets the target to an energy
eigenstate, and that the outcome of the measurement
identifies the respective energy eigenvalue. The time needed
to induce the entanglement can be made arbitrarily short by
increasing the strength of the interaction. Thus, the PMEof a
knownH can, in principle, be implemented instantaneously.

This protocol, however, does not take into account the time
required to identify H. Let us estimate the time cost by
analyzing quantum process tomography [6,7] on the time
evolution of the system. Process tomography involves setting
the target to various “test states” and measuring the expect-
ation value of appropriate observables for each resulting
state after the time evolution. A complete process tomogra-
phy for a system described by a d-dimensional Hilbert
space H ¼ Cd requires a number of observables, Oðd2Þ,
equal to the number of parameters in the Hamiltonian [8].
An accurate estimation of the expectation values needs

to accumulate sufficient statistics. Each use of the time
evolution costs time t; hence, the total time cost for
the tomography to achieve a given accuracy for a d-
dimensional system scales, at least, at Oðd2Þ. This implies
that, if H is unknown, the total implementation time for the
PME via process tomography grows at least exponentially
in the number of subsystems due to the exponential growth
of the total dimensions for composite systems.
Tomography is required even if a PME is to be

performed only once. It extracts enough information to
identify all the eigenspaces and eigenvalues of H, so the
dimension dependence is thus unavoidable. A single use of
the PME, however, does not reveal the exact description
of the energy eigenspaces or the whole energy spectrum.
A more efficient PME protocol is needed.
To improve a PME protocol is to find a better quantum

algorithm. Some quantum algorithms are known to provide
an efficient solution to computational problems [9]. These
algorithms, however, assume that the dynamics of a
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quantum system can be “switched off” at will, which does
not hold in this problem.
In this Letter, we introduce a more efficient PME

protocol, and we show that we can remove the dimension
dependence in the time cost for unknown Hamiltonians
whose energy scale is given. Our protocol exploits a
modified version of quantum phase estimation (QPE)
[10]. Finally, we discuss an estimation protocol for the
energy scale, based on an estimation of the trace of a
unitary operator. We will show that another computational
quantum algorithm, adapted from Ref. [11], performs more
efficiently than a complete tomography.
Projective measurement by QPE.—QPE is designed so

that each run returns a good estimate for some eigenvalue
of a given unitary operator U ¼ P

d
k¼1 expðiθkÞjθkihθkj on

H ¼ Cd. Note that we assume 0 ≤ θk < 2π. For a given
input state jθki, the corresponding phase θk is estimated by
QPE. An essential building block of QPE is a controlled-
unitary operation CU, which is a unitary gate that condi-
tionally operates U on a d-dimensional target system,
denoted by Ht ¼ Cd, according to the state of an extra
control qubit, denoted by Hc ¼ C2. Formally, the action
of CU on Hc ⊗ Ht is defined by CUj0ijφi ¼ j0ijφi and
CUj1ijφi ¼ j1iUjφi for any jφi ∈ Ht, where fj0i; j1ig
forms the computational basis of Hc. To achieve an N-bit
estimate, QPE uses N control qubits for applying ðCUÞ2l−1
between the lth control qubit for each l ∈ f1;…; Ng
and the target. We obtain an N-bit string fn1;…; nNg of

outcomes by the final measurements on the N control
qubits in the computational basis. When labeling
nN≔

P
N
l¼1 2

l−1nl and fðnNÞ≔nN=2N , the estimate of the
phase is θk ¼ 2πfðnNÞ.
In the limit N → ∞, fðnNÞ can be regarded as a

continuous variable f with 0 ≤ f ≤ 1. For any θk, the
probability pN ½fðnNÞjθk� to obtain nN for an initial
state jθki approaches the delta function δðf − θk=2πÞ in
distribution. The distance between pN ½fðnNÞjθk� and
δðf − θk=2πÞ is independent of d. At the same limit, the
target is transformed to an eigenstate by a projection onto
the corresponding eigenspace induced by the final mea-
surements of QPE. Interested readers may refer to the
Supplemental Material [12] for details of QPE.
QPE and universal controllization.—The evolution of a

target with HamiltonianH for time t is given by the unitary
operatorUðtÞ ¼ expð−iHtÞ, with ℏ ¼ 1. It may appear that
QPE on UðtÞ readily implements a projection onto the
eigenspace corresponding to the estimated phase of UðtÞ,
which is also the desired PME ofH up to the ambiguity due
to the phase periodicity. QPE assumes that U is available
in its quantum-controlled form, namely, CU, but the time
evolution operator is not. Adding a quantum control to a
quantum gate—a task which, we call controllization—is not
trivial when U is unknown. In this Letter we introduce
universal controllization, a quantum subroutine that approx-
imately implements controllization for an unknown U.
We introduce a d-dimensional ancillary system

denoted by Ha ¼ Cd and define a unitary gate
WU≔CSðI2 ⊗ U ⊗ IdÞCS on Hc ⊗ Ht ⊗ Ha, where CS
is a unitary gate called the controlled-swap operation
defined by CSj0ijψijϕi ¼ j0ijϕijψi and CSj1ijψijϕi ¼
j1ijψijϕi, for any jψi; jϕi ∈ Cd, and Ik denotes the k × k
identity matrix. We call WU a classically conditioned
quantum gate since it perfectly simulates CU when the
control qubit is in a state j0i or j1i. However, WU deviates
from CU for a general input state jηi ¼ αj0i þ βj1i in the
control. SinceWUjηijψijϕi¼αj0ijψiUjϕiþβj1iUjψijϕi,
the ancilla system is also entangled to the control and target
systems and, thus, decoherence occurs in the control-target
system in general. If we can prepare an eigenstate of
U in the ancilla system, exact implementations of CU are
possible [17–19], but such implementations require some
knowledge of U. Other known controllization schemes
[20,21] also require the quantum gate to be at least
partially known. Indeed, it has even been proven that
an exact controllization is impossible within quantum
mechanics [19,22].
These results are derived assuming that the input

quantum gate is a black box. The unitary operator UðtÞ,
on the other hand, has a tunable parameter, namely, the
evolution duration t. We exploit this feature and a decou-
pling method [23] used in quantum information theory to
asymptotically implement a universal controllization of
UðtÞ. The implementation accuracy of our controllization

FIG. 1 (color online). Schematic diagrams of PME protocols on
a system of unknown self-Hamiltonian H (labeled as “target.”)
The blue boxes expð−iHtÞ denote the target being allowed to
evolve for time t with ℏ ¼ 1. M is a quantum measurement that
returns a numerical outcome. The implementation time has a
lower bound from the time required to induce the evolution of the
target system. There is no limit, in principle, to the strength of
the interaction induced on the system from outside. In the top
protocol, H is identified by quantum (process) tomography, with
at least NQT ¼ Oðd2Þ uses of the time evolution expð−iHtÞ for
d-dimensional systems. The quantum algorithmic PME (bottom)
proposed in this Letter avoids quantum tomography, and all
interactions are H independent.
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depends on the maximum difference between any two
eigenvalues of H.
To reduce the decoherence by WU, we need to make the

resulting state of the ancilla depend as little as possible on
the initial control-target state. Let us prepare the ancilla in
the completely mixed state Id=d, so that the state of the
ancilla remains the same, at least when the control qubit is
in j0i or j1i for any given U. We consider the reduced map
on the control-target system,

ΓU½ρ�≔TrHa
ðWUðρ ⊗ Id=dÞW†

UÞ; ð1Þ

where ρ is a density matrix on Hc ⊗ Ht. We call the map
ΓU pseudocontrollization. For ρ ¼ jηihηj ⊗ jψihψ j, we
have

ΓU½jηihηj⊗ jψihψ j�
¼CUðjηihηj⊗ jψihψ jÞC†

U

þ½αβ�j0ih1j⊗ jψihψ jðγU−1ÞU†þc:c:�; ð2Þ

where γU ¼ Tr½U�=d. The second term in Eq. (2) acts
as a kind of phase damping noise on the control-target
system. The factor γU − 1 determines the deviation of
the reduced map ΓU from the ideal controllization. We
define the coherence factor aU≔jγUj and a phase factor
eiφU≔γU=jγUj. Notice that 1 − aU ≤ jγU − 1j. Thus, the
phase damping noise is minimized if we regard ΓU as an
approximation of CU0 for U0 ¼ e−iφUU. In a sense, ΓU
implements a noisy controlled-unitary operation, where
the magnitude of the noise is determined by a positive
quantity 1 − aU.
We further reduce the dependence of the ancilla on the

initial control-target state by the use of a set fσrg of unitary
operations on the ancilla such that

1

d2
X
r

σrWUðρtot ⊗ Id=dÞW†
Uσ

†
r ¼ ΓU½ρtot� ⊗ Id=d: ð3Þ

Note that the ancilla is “refreshed” to the completely mixed
state only by operations on the ancilla. (Such a random
operation has been extensively applied to questions in
quantum communication [23].) We divide WUðtÞ into m
repetitions of WUðt=mÞ, each followed by the refreshing
operation (3). Here,m fixes the refresh rate. The strength of
the noise after each refreshing operation is Oð1=m2Þ. Thus
the total effect of the noise scalesOðm×½1=m2�Þ¼Oð1=mÞ,
which vanishes in the asymptotic limit of m → ∞ [12].
This phenomenon is mathematically analogous to the
quantum Zeno effect [24].
We call this asymptotic implementation of a

controlled-unitary operation including the repeated refresh-
ing operation, universal controllization. For finite m,
the universal controllization approximates the controlled-
unitary operation CU½m�ðtÞ, where U½m�ðtÞ ¼ e−imφUðt=mÞUðtÞ.

With m → ∞, expðimφUðt=mÞÞ converges to expð−iTr½H�t=
dÞ. In a sense, the universal controllization fixes the
reference point of the energy of H so that Tr½H� ¼ 0. A
more detailed discussion of the universal controllization is
presented in Ref. [12].
PME by universal controllization.—A perfect PME for a

system with a Hamiltonian H is distinguished from other
quantum operations by two properties. First, the system
remains in the same eigenstate when a PME is applied
consecutively. Second, the outcomes of the consecutive
measurements are all precisely equal to Ek. The probability
density pðEjEkÞ of obtaining E as the outcome must be the
delta function δðE;EkÞ≔δðE − EkÞ. Conversely, the only
measurement satisfying these properties is a perfect PME.
A subtlety is that perfect PMEs for H and for H − λI

should be considered equivalent, since two Hamiltonians
with different reference points of energy are physically
equivalent. A measurement scheme is regarded as a perfect
PME for H if pðEjEkÞ ¼ δðE;Ek − λÞ, as long as λ is
independent of k.
Our PME protocol uses QPE on the time evolution

operator UðtÞ with CU½m�ðtÞ implemented by the universal
controllization. Here, the control qubits and ancilla of the
universal controllization serve as the probe. The probe-
target interaction is used to performWUðt=mÞ, the refreshing
operations, and quantum Fourier transformation. The lower
figure in Fig. 1 provides a conceptual diagram.
In the ideal case of m → ∞ and N → ∞, the modified

QPE implements the projective measurement defined by
the spectral decomposition of ~UðtÞ ¼ expð−i ~HtÞ, where
~H≔H − Tr½H�I. The outcome f gives − ~Ekt (mod 2π) for
some energy eigenvalue ~Ek of ~H.

~Ek cannot be uniquely determined from f for general t
due to the periodicity of the phase function expðiθÞ. Let us
restrict t so that ~Ek ∈ ðπ=t;−π=tÞ, namely,

Δmaxt ≤ π=2; ð4Þ

where Δmax ¼ maxk;lj ~Ek − ~Elj. The energy eigenvalues are
uniquely determined by

E½f� ¼
�−2πf=t f ∈ ½0; 1

2
Þ

−ð2πf − 2πÞ=t f ∈ ½1
2
; 1Þ : ð5Þ

Recall that the probability distribution of f is the delta
function δðf−θk=2πÞ. Thus, pðEjEkÞ ¼ δðE;Ek − Tr½H�Þ,
which is the desired function. The projection onto the
corresponding energy eigenspace is already guaranteed
by QPE.
For finite m and N, we continue to choose t according

to Eq. (4) and estimate Ek by Eq. (5) with f replaced by
fðnNÞ. The implemented measurement is an approximation
of a PME. A target initially in an energy eigenstate jEki
results in the same state at the end of the scheme. One of the
conditions for a perfect PME is still satisfied. Thus, the
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accuracy of the scheme is determined by how close
pðEjEkÞ for each jEki simulates a delta function
δðE;Ek − λÞ.
Implementation accuracy and time cost.—Recall that

pN ½fðnNÞjθk� in QPE needs to approach the delta function
δðf − θk=2πÞ in N → ∞ to achieve the projective meas-
urement determined by U. If each CU in QPE is replaced
by the adapted classical controllization (i.e., substituted by
WU and an ancilla), pN ½fðnNÞjθk� does not converge to the
delta function unless aU ¼ 1.

Let us denote by p½m�
N ½fðnNÞjEk� the probability distri-

bution of fðnNÞ for a given m, N, and initial state jEki. For
a finite m, the universal controllization approximately
controllizes U0 ¼ exp½−iðHt −mφUðt=mÞIÞ�. In this case,
each run of the approximated QPE provides an estimate
for the eigenvalue corresponding to jEki, which is
θ0k ¼ −EktþmφUðt=mÞ (mod 2π). When N increases, the

deviation of p½m�
N ½fðnNÞjEk� from pN ½fðnNÞjθ0k� caused

by the controllization error prevents the function from
converging to a delta function [see Fig. 2(a)]. The deviation

can be bounded by jp½m�
N ½fðnNÞjEk� − pN ½fðnNÞjθ0k�j ≤ ϵ

for any ϵ > 0 when m is set to

m ≥ ðΔmaxtÞ2N2N−3=ϵ; ð6Þ
as shown in Ref. [12] [see Fig. 2(b) for examples].
For a given refresh rate m, each universal controllization

makes m uses of WUðt=mÞ, where the total evolution
duration ðt=mÞ ×m ¼ t is independent of m. Hence,

p½m�
N ½fðnNÞjEk� can be brought arbitrarily close to

pN ½fðnNÞjθ0k� without increasing the time cost. The dis-
tribution pN ½fðnNÞjθ0k� is not a delta function for any finite
N, even with perfect controlled-unitary operations CU (i.e.,
infinite m). The cost doubles for each control qubit added,
but the distance between pN ½fðnNÞjθ0k� and the delta
function δðE; ~EkÞ is independent of the dimension of the
target. Hence, the implementation accuracy of the PME can
be improved without any dimension dependence.
Quantum algorithmic estimation of the energy scale.—

We showed the existence of our PME protocol under the
assumption that Δmax is known. The assumption can be
relaxed to knowing an upper bound on Δmax. The bound
may be estimated by quantum (process) tomography, but
the tomography requires that a prior distribution of H is
given. For a certain prior distribution, it is possible to
estimate the bound by measuring the coherence factor aU.
We observe that aU approaches 1 as the product Δmaxt
decreases to 0. Thus, when aU is estimated to be close to 1,
it is possible that Δmaxt is sufficiently small. While this is
not true for some Hamiltonians, the probability of such an
“error” decreases exponentially in the dimension d of the
target for a particular class of prior distribution [12]. Hence,
we can reliably estimate aU.
To estimate aU, we modify the quantum algorithm

presented in Ref. [11]. The original algorithm outputs

the trace Tr½U� of an input unitary U, provided that
the corresponding CU is available. In our problem, we
replace CU with WU. With this modification, the original
algorithm returns jTr½U�j2 [12]; thus, we obtain aU,
because a2U ¼ jTr½U�j2=d2. Clearly, this modified algo-
rithm estimates aU much more efficiently than process
tomography.
Conclusion.—In this Letter, we presented an implemen-

tation protocol for a projective measurement of energy on a
system driven by an unknown Hamiltonian with a given
energy scale. The implementation time cost of the protocol
is independent of the dimension of the system, unlike the
protocol based on quantum process tomography. The
protocol is based on a computational quantum algorithm
called quantum phase estimation. We introduced universal
controllization to make the computational algorithm
executable without suppressing the evolution of the target
system. Another computational quantum algorithm is
shown to be effective in estimating the energy scale with
a suitable modification. This motivates the search for
further applications of quantum algorithms outside their
original computational context.

FIG. 2 (color online). Plots of probability distributions

p½m�
N ½fðnNÞjEk� and their envelope functions for the target

Hamiltonian H ¼ −
P

3
λ¼0 jEðλÞ

0 ihEðλÞ
0 j þ jE1ihE1j, t ¼ 0.225π,

and setting Ek ¼ E1. Each marker represents p½m�
N ½fðnNÞjEk�

of finding each outcome by a single round of the PME scheme.

(a) p½m�
N ½fðnNÞjEk� for N ¼ 2; 4; 6 for a fixed refreshing rate

m ¼ 8. (b) p½m�
N ½fðnNÞjEk� for N ¼ 2; 4; 6 where each value of m

is adaptively chosen as the smallest integer satisfying m ≥
ðΔmaxtÞ2N2N−3=ϵ and target error ϵ is set to 0.25. In all cases,
markers corresponding to probabilities less than one tenth of the
target error (0.025) are omitted for clarity.
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