7 research outputs found

    Post-Vasectomy Semen Analysis: Optimizing Laboratory Procedures and Test Interpretation through a Clinical Audit and Global Survey of Practices

    Get PDF
    Purpose: The success of vasectomy is determined by the outcome of a post-vasectomy semen analysis (PVSA). This article describes a step-by-step procedure to perform PVSA accurately, report data from patients who underwent post vasectomy semen analysis between 2015 and 2021 experience, along with results from an international online survey on clinical practice. Materials and methods: We present a detailed step-by-step protocol for performing and interpretating PVSA testing, along with recommendations for proficiency testing, competency assessment for performing PVSA, and clinical and laboratory scenarios. Moreover, we conducted an analysis of 1,114 PVSA performed at the Cleveland Clinic's Andrology Laboratory and an online survey to understand clinician responses to the PVSA results in various countries. Results: Results from our clinical experience showed that 92.1% of patients passed PVSA, with 7.9% being further tested. A total of 78 experts from 19 countries participated in the survey, and the majority reported to use time from vasectomy rather than the number of ejaculations as criterion to request PVSA. A high percentage of responders reported permitting unprotected intercourse only if PVSA samples show azoospermia while, in the presence of few non-motile sperm, the majority of responders suggested using alternative contraception, followed by another PVSA. In the presence of motile sperm, the majority of participants asked for further PVSA testing. Repeat vasectomy was mainly recommended if motile sperm were observed after multiple PVSA's. A large percentage reported to recommend a second PVSA due to the possibility of legal actions. Conclusions: Our results highlighted varying clinical practices around the globe, with controversy over the significance of non-motile sperm in the PVSA sample. Our data suggest that less stringent AUA guidelines would help improve test compliance. A large longitudinal multi-center study would clarify various doubts related to timing and interpretation of PVSA and would also help us to understand, and perhaps predict, recanalization and the potential for future failure of a vasectomy

    Does varicocele repair improve conventional semen parameters? A meta-analytic study of before-after data

    Get PDF
    Purpose The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles. Materials and Methods The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies). Results Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were included in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129–0.278; p<0.001; I2=83.62%, Egger’s p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474–1.706; p<0.001; I2=97.86%, Egger’s p<0.0001; total sperm count: SMD 1.824, 95% CI: 1.526–2.121; p<0.001; I2=97.88%, Egger’s p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318–1.968; p<0.001; I2=98.65%, Egger’s p=0.0003; progressive sperm motility: SMD 1.845, 95% CI: 1.537%–2.153%; p<0.001; I2=98.97%, Egger’s p<0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%–1.759%; p<0.001; l2=97.98%, Egger’s p<0.001; sperm morphology: SMD 1.066, 95% CI 0.992%–1.211%; p<0.001; I2=97.87%, Egger’s p=0.1864. Conclusions The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele. Keywords Controlled before-after studies; Infertility, male; Meta-analysis; Varicocel

    Does Varicocele Repair Improve Conventional Semen Parameters? A Meta-Analytic Study of Before-After Data

    No full text
    Purpose: The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles. Materials and methods: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies). Results: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were included in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p&lt;0.001; I²=83.62%, Egger's p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p&lt;0.001; I²=97.86%, Egger's p&lt;0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p&lt;0.001; I²=97.88%, Egger's p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p&lt;0.001; I²=98.65%, Egger's p=0.0003; progressive sperm motility: SMD 1.845, 95% CI: 1.537%-2.153%; p&lt;0.001; I²=98.97%, Egger's p&lt;0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p&lt;0.001; l2=97.98%, Egger's p&lt;0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p&lt;0.001; I²=97.87%, Egger's p=0.1864. Conclusions: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele

    The mechanisms and potential of stem cell therapy for penile fibrosis

    No full text

    Consensus and Diversity in the Management of Varicocele for Male Infertility: Results of a Global Practice Survey and Comparison with Guidelines and Recommendations

    No full text
    Purpose: Varicocele is a common problem among infertile men. Varicocele repair (VR) is frequently performed to improve semen parameters and the chances of pregnancy. However, there is a lack of consensus about the diagnosis, indications for VR and its outcomes. The aim of this study was to explore global practice patterns on the management of varicocele in the context of male infertility. Materials and methods: Sixty practicing urologists/andrologists from 23 countries contributed 382 multiple-choice-questions pertaining to varicocele management. These were condensed into an online questionnaire that was forwarded to clinicians involved in male infertility management through direct invitation. The results were analyzed for disagreement and agreement in practice patterns and, compared with the latest guidelines of international professional societies (American Urological Association [AUA], American Society for Reproductive Medicine [ASRM], and European Association of Urology [EAU]), and with evidence emerging from recent systematic reviews and meta-analyses. Additionally, an expert opinion on each topic was provided based on the consensus of 16 experts in the field. Results: The questionnaire was answered by 574 clinicians from 59 countries. The majority of respondents were urologists/uro-andrologists. A wide diversity of opinion was seen in every aspect of varicocele diagnosis, indications for repair, choice of technique, management of sub-clinical varicocele and the role of VR in azoospermia. A significant proportion of the responses were at odds with the recommendations of AUA, ASRM, and EAU. A large number of clinical situations were identified where no guidelines are available. Conclusions: This study is the largest global survey performed to date on the clinical management of varicocele for male infertility. It demonstrates: 1) a wide disagreement in the approach to varicocele management, 2) large gaps in the clinical practice guidelines from professional societies, and 3) the need for further studies on several aspects of varicocele management in infertile men

    Consensus and diversity in the management of varicocele for male infertility: results of a global practice survey and comparison with guidelines and recommendations

    Get PDF
    Purpose Varicocele is a common problem among infertile men. Varicocele repair (VR) is frequently performed to improve semen parameters and the chances of pregnancy. However, there is a lack of consensus about the diagnosis, indications for VR and its outcomes. The aim of this study was to explore global practice patterns on the management of varicocele in the context of male infertility. Materials and Methods Sixty practicing urologists/andrologists from 23 countries contributed 382 multiple-choice-questions pertaining to varicocele management. These were condensed into an online questionnaire that was forwarded to clinicians involved in male infertility management through direct invitation. The results were analyzed for disagreement and agreement in practice patterns and, compared with the latest guidelines of international professional societies (American Urological Association [AUA], American Society for Reproductive Medicine [ASRM], and European Association of Urology [EAU]), and with evidence emerging from recent systematic reviews and meta-analyses. Additionally, an expert opinion on each topic was provided based on the consensus of 16 experts in the field. Results The questionnaire was answered by 574 clinicians from 59 countries. The majority of respondents were urologists/uro-andrologists. A wide diversity of opinion was seen in every aspect of varicocele diagnosis, indications for repair, choice of technique, management of sub-clinical varicocele and the role of VR in azoospermia. A significant proportion of the responses were at odds with the recommendations of AUA, ASRM, and EAU. A large number of clinical situations were identified where no guidelines are available. Conclusions This study is the largest global survey performed to date on the clinical management of varicocele for male infertility. It demonstrates: 1) a wide disagreement in the approach to varicocele management, 2) large gaps in the clinical practice guidelines from professional societies, and 3) the need for further studies on several aspects of varicocele management in infertile men
    corecore