121 research outputs found
Binge-Pattern Alcohol Exposure during Puberty Induces Long-Term Changes in HPA Axis Reactivity
Adolescence is a dynamic and important period of brain development however, little is known about the long-term neurobiological consequences of alcohol consumption during puberty. Our previous studies showed that binge-pattern ethanol (EtOH) treatment during pubertal development negatively dysregulated the responsiveness of the hypothalamo-pituitary-adrenal (HPA) axis, as manifested by alterations in corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP), and corticosterone (CORT) during this time period. Thus, the primary goal of this study was to determine whether these observed changes in important central regulators of the stress response were permanent or transient. In this study, juvenile male Wistar rats were treated with a binge-pattern EtOH treatment paradigm or saline alone for 8 days. The animals were left undisturbed until adulthood when they received a second round of treatments consisting of saline alone, a single dose of EtOH, or a second binge-pattern treatment paradigm. The results showed that pubertal binge-pattern EtOH exposure induced striking long-lasting alterations of many HPA axis parameters. Overall, our data provide strong evidence that binge-pattern EtOH exposure during pubertal maturation has long-term detrimental effects for the healthy development of the HPA axis
A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias belonging to the same bone dysplasia family. PSACH is characterized by generalized epi-metaphyseal dysplasia, short-limbed dwarfism, joint laxity and early onset osteoarthritis. MED is a milder disease with radiographic features often restricted to the epiphyses of the long bones. PSACH and some forms of MED result from mutations in cartilage oligomeric matrix protein (COMP), a pentameric glycoprotein found in cartilage, tendon, ligament and muscle. PSACH-MED patients often have a mild myopathy characterized by mildly increased plasma creatine kinase levels, a variation in myofibre size and/or small atrophic fibres. In some instances, patients are referred to neuromuscular clinics prior to the diagnosis of an underlying skeletal dysplasia; however, the myopathy associated with PSACH-MED has not previously been studied. In this study, we present a detailed study of skeletal muscle, tendon and ligament from a mouse model of mild PSACH harbouring a COMP mutation. Mutant mice exhibited a progressive muscle weakness associated with an increased number of muscle fibres with central nuclei at the perimysium and at the myotendinous junction. Furthermore, the distribution of collagen fibril diameters in the mutant tendons and ligaments was altered towards thicker collagen fibrils, and the tendons became more lax in cyclic strain tests. We hypothesize that the myopathy in PSACH-MED originates from an underlying tendon and ligament pathology that is a direct result of structural abnormalities to the collagen fibril architecture. This is the first comprehensive characterization of the musculoskeletal phenotype of PSACH-MED and is directly relevant to the clinical management of these patients
Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies
- …
