83 research outputs found

    The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments

    Full text link
    There has been great interest in applying the results of statistical mechanics to single molecule experiements. Recent work has highlighted so-called non-equilibrium work-energy relations and Fluctuation Theorems which take on an equilibrium-like (time independent) form. Here I give a very simple heuristic example where an equilibrium result (the barometric law for colloidal particles) arises from theory describing the {\em thermodynamically} non-equilibrium phenomenon of a single colloidal particle falling through solution due to gravity. This simple result arises from the fact that the particle, even while falling, is in {\em mechanical} equilibrium (gravitational force equal the viscous drag force) at every instant. The results are generalized by appeal to the central limit theorem. The resulting time independent equations that hold for thermodynamically non-equilibrium (and even non-stationary) processes offer great possibilities for rapid determination of thermodynamic parameters from single molecule experiments.Comment: 6 page

    Self-similar disk packings as model spatial scale-free networks

    Full text link
    The network of contacts in space-filling disk packings, such as the Apollonian packing, are examined. These networks provide an interesting example of spatial scale-free networks, where the topology reflects the broad distribution of disk areas. A wide variety of topological and spatial properties of these systems are characterized. Their potential as models for networks of connected minima on energy landscapes is discussed.Comment: 13 pages, 12 figures; some bugs fixed and further discussion of higher-dimensional packing

    Colloquium: Statistical mechanics of money, wealth, and income

    Full text link
    This Colloquium reviews statistical models for money, wealth, and income distributions developed in the econophysics literature since the late 1990s. By analogy with the Boltzmann-Gibbs distribution of energy in physics, it is shown that the probability distribution of money is exponential for certain classes of models with interacting economic agents. Alternative scenarios are also reviewed. Data analysis of the empirical distributions of wealth and income reveals a two-class distribution. The majority of the population belongs to the lower class, characterized by the exponential ("thermal") distribution, whereas a small fraction of the population in the upper class is characterized by the power-law ("superthermal") distribution. The lower part is very stable, stationary in time, whereas the upper part is highly dynamical and out of equilibrium.Comment: 24 pages, 13 figures; v.2 - minor stylistic changes and updates of references corresponding to the published versio

    La production de l'hélium par l'uranium

    No full text
    Pas de Résumé disponibl

    Essais pour évaluer la période de l'ionium

    No full text
    Pas de Résumé disponibl

    La table périodique des éléments

    No full text
    Pas de Résumé disponibl

    État actuel de la radioactivité

    No full text
    Pas de Résumé disponibl

    Le produit et le rayonnement de l'uranium X

    No full text
    Pas de Résumé disponibl

    The Second Law of Thermodynamics

    No full text
    • …
    corecore