15 research outputs found

    Scalar field in the Bianchi I: Non commutative classical and Quantum Cosmology

    Full text link
    Using the ADM formalism in the minisuperspace, we obtain the commutative and noncommutative exact classical solutions and exact wave function to the Wheeler-DeWitt equation with an arbitrary factor ordering, for the anisotropic Bianchi type I cosmological model, coupled to a scalar field, cosmological term and barotropic perfect fluid. We introduce noncommutative scale factors, considering that all minisuperspace variables qi\rm q^i do not commute, so the symplectic structure was modified. In the classical regime, it is shown that the anisotropic parameter β±nc\rm \beta_{\pm nc} and the field ϕ\phi, for some value in the λeff\lambda_{eff} cosmological term and noncommutative θ\theta parameter, present a dynamical isotropization up to a critical cosmic time tct_{c}; after this time, the effects of isotropization in the noncommutative minisuperspace seems to disappear. In the quantum regimen, the probability density presents a new structure that corresponds to the value of the noncommutativity parameter.Comment: 17 pages, 6 figures, Acepted in IJT

    The Behavior of Kasner Cosmologies with Induced Matter

    Get PDF
    We extend the induced matter model, previously applied to a variety of isotropic cases, to a generalization of Bianchi type-I anisotropic cosmologies. The induced matter model is a 5D Kaluza-Klein approach in which assumptions of compactness are relaxed for the fifth coordinate, leading to extra geometric terms. One interpretation of these extra terms is to identify them as an ``induced matter'' contribution to the stress-energy tensor. In similar spirit, we construct a five dimensional metric in which the spatial slices possess Bianchi type-I geometry. We find a set of solutions for the five dimensional Einstein equations, and determine the pressure and density of induced matter. We comment on the long-term dynamics of the model, showing that the assumption of positive density leads to the contraction over time of the fifth scale factor.Comment: 14 page

    (Non)commutative isotropization in Bianchi I with Barotropic perfect fluid and Λ\Lambda Cosmological

    Full text link
    We present the classical solutions to the Einstein field equations derived using the WKB-like and Hamilton procedures. The investigation is carried out in the commutative and noncommutative scenario for the Bianchi type I cosmological model coupled to barotropic perfect fluid and λ\lambda Cosmological for two different gauges. Noncommutativity is achieved by modifying the symplectic structure considering that all minisuperspace variables qi\rm q^i does not commute and by a deformation between all the minisuperspace variables. In the gauge N=1, it is possible to obtain that the anisotropic parameter β±nc\rm \beta_{\pm nc} tend to a constant curvature for large period of time considering different values in the noncommutative parameters θ\theta and cosmological term. However, this behavior give the idea that is necessary introduce other class of matter in the models, for to have a real isotropization in the model, such as dark energy or dark matter.Comment: 15 pages, 1 figur

    Impact of transport infrastructure on international competitiveness of Europe

    No full text
    One of the main objectives of the European transport strategy in its 2011 White Paper is to help establish a transport system that enhances competitiveness of European countries. By performing a methodological study, analysing several European transport infrastructure investment cases and conducting a review on various assessment tools, we clarify the relationship between transport infrastructure investment and its wider economic impacts, namely competitiveness and economic growth, we make synthesis of some proposed improvement of the methodology used to assess these impact as well as some recommendations on assessing European Union (EU) policy in transport infrastructure investment in respect of competitiveness and economic growth
    corecore