96 research outputs found

    The Electromagnetic Mass Differences of Pions and Kaons

    Get PDF
    We use the Cottingham method to calculate the pion and kaon electromagnetic mass differences with as few model dependent inputs as possible. The constraints of chiral symmetry at low energy, QCD at high energy and experimental data in between are used in the dispersion relation. We find excellent agreement with experiment for the pion mass difference. The kaon mass difference exhibits a strong violation of the lowest order prediction of Dashen's theorem, in qualitative agreement with several other recent calculations.Comment: 40 pages, Latex, needs axodraw. and psfig. macros, 4 figure

    Climate Engineering Responses to Climate Emergencies

    Get PDF
    Despite efforts to stabilize CO_2 concentrations, it is possible that the climate system could respond abruptly with catastrophic consequences. Intentional intervention in the climate system to avoid or ameliorate such consequences has been proposed as one possible response, should such a scenario arise. In a one-week study, the authors of this report conducted a technical review and evaluation of proposed climate engineering concepts that might serve as a rapid palliative response to such climate emergency scenarios. Because of their potential to induce a prompt (less than one year) global cooling, this study concentrated on Shortwave Climate Engineering (SWCE) methods for moderately reducing the amount of shortwave solar radiation reaching the Earth. The study's main objective was to outline a decade-long agenda of technical research that would maximally reduce the uncertainty surrounding the benefits and risks associated with SWCE. For rigor of technical analysis, the study focused the research agenda on one particular SWCE concept--stratospheric aerosol injection--and in doing so developed several conceptual frameworks and methods valuable for assessing any SWCE proposal.Comment: 66 pp., 5 figs., published by Novim, Santa Barbara, Cal., revised referenc

    Post-construction thermal testing: Some recent measurements

    Get PDF
    In the UK, it has become apparent in recent years that there is often a discrepancy between the steady-state predicted and the measured in situ thermal performance of the building fabric, with the measured in situ performance being greater than that predicted. This discrepancy or gap in the thermal performance of the building fabric is commonly referred to as the building fabric 'performance gap'. This paper presents the results and key messages obtained from undertaking a whole-building heat loss test (a coheating test) on seven new-build dwellings as part of the Technology Strategy Board's Building Performance Evaluation Programme. While the total number of dwellings involved in the work reported here is small, the results illustrate that a wide range of discrepancies in thermal performance was measured for the tested dwellings. Despite this, the results also indicate that it is possible to construct dwellings where the building fabric performs thermally more or less as predicted, thus effectively bridging the traditional building fabric performance gap that exists in mainstream housing in the UK

    Normative productivity of the global vegetation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The biosphere models of terrestrial productivity are essential for projecting climate change and assessing mitigation and adaptation options. Many of them have been developed in connection to the International Geosphere-Biosphere Program (IGBP) that backs the work of the Intergovernmental Panel on Climate Change (IPCC). In the end of 1990s, IGBP sponsored release of a data set summarizing the model outputs and setting certain norms for estimates of terrestrial productivity. Since a number of new models and new versions of old models were developed during the past decade, these normative data require updating.</p> <p>Results</p> <p>Here, we provide the series of updates that reflects evolution of biosphere models and demonstrates evolutional stability of the global and regional estimates of terrestrial productivity. Most of them fit well the long-living Miami model. At the same time we call attention to the emerging alternative: the global potential for net primary production of biomass may be as high as 70 PgC y<sup>-1</sup>, the productivity of larch forest zone may be comparable to the productivity of taiga zone, and the productivity of rain-green forest zone may be comparable to the productivity of tropical rainforest zone.</p> <p>Conclusion</p> <p>The departure from Miami model's worldview mentioned above cannot be simply ignored. It requires thorough examination using modern observational tools and techniques for model-data fusion. Stability of normative knowledge is not its ultimate goal – the norms for estimates of terrestrial productivity must be evidence-based.</p
    • …
    corecore