453 research outputs found

    Caldesmon suppresses cancer cell invasion by regulating podosome/invadopodium formation

    Get PDF
    AbstractThe podosome and invadopodium are dynamic cell-adhesion structures that degrade the extracellular matrix (ECM) and promote cell invasion. We recently reported that the actin-binding protein caldesmon is a pivotal regulator of podosome formation. Here, we analyzed the caldesmon’s involvement in podosome/invadopodium-mediated invasion by transformed and cancer cells. The ectopic expression of caldesmon reduced the number of podosomes/invadopodia and decreased the ECM degradation activity, resulting in the suppression of cell invasion. Conversely, the depletion of caldesmon facilitated the formation of podosomes/invadopodia and cell invasion. Taken together, our results indicate that caldesmon acts as a potent repressor of cancer cell invasion

    Phasic Phosphorylation of Caldesmon and ERK 1/2 during Contractions in Human Myometrium

    Get PDF
    Human myometrium develops phasic contractions during labor. Phosphorylation of caldesmon (h-CaD) and extracellular signal-regulated kinase 1/2 (ERK 1/2) has been implicated in development of these contractions, however the phospho-regulation of these proteins is yet to be examined during periods of both contraction and relaxation. We hypothesized that protein phosphorylation events are implicated in the phasic nature of myometrial contractions, and aimed to examine h-CaD and ERK 1/2 phosphorylation in myometrium snap frozen at specific stages, including; (1) prior to onset of contractions, (2) at peak contraction and (3) during relaxation. We aimed to compare h-CaD and ERK 1/2 phosphorylation in vitro against results from in vivo studies that compared not-in-labor (NIL) and laboring (L) myometrium. Comparison of NIL (n = 8) and L (n = 8) myometrium revealed a 2-fold increase in h-CaD phosphorylation (ser-789; P = 0.012) during onset of labor in vivo, and was associated with significantly up-regulated ERK2 expression (P = 0.022), however no change in ERK2 phosphorylation was observed (P = 0.475). During in vitro studies (n = 5), transition from non-contracting tissue to tissue at peak contraction was associated with increased phosphorylation of both h-CaD and ERK 1/2. Furthermore, tissue preserved at relaxation phase exhibited diminished levels of h-CaD and ERK 1/2 phosphorylation compared to tissue preserved at peak contraction, thereby producing a phasic phosphorylation profile for h-CaD and ERK 1/2. h-CaD and ERK 1/2 are phosphorylated during myometrial contractions, however their phospho-regulation is dynamic, in that h-CaD and ERK 1/2 are phosphorylated and dephosphorylated in phase with contraction and relaxation respectively. Comparisons of NIL and L tissue are at risk of failing to detect these changes, as L samples are not necessarily preserved in the midst of an active contraction

    Randomized Controlled Trial on Effectiveness of Ultrasonography Screening for Breast Cancer in Women Aged 40–49 (J-START): Research Design

    Get PDF
    In cancer screening, it is essential to undertake effective screening with appropriate methodology, which should be supported by evidence of a reduced mortality rate. At present, mammography is the only method for breast cancer screening with such evidence. However, mammography does not achieve sufficient accuracy in breasts with high density at ages below 50. Although ultrasonography achieves better accuracy in Breast Cancer detection even in dense breasts, the effectiveness has not been verified. We have planned a randomized controlled trial to assess the effectiveness of ultrasonography in women aged 40–49, with a design to study 50 000 women with mammography and ultrasonography (intervention group), and 50 000 controls with mammography only (control group). The participants are scheduled to take second round screening with the same modality 2 years on. The primary endpoints are sensitivity and specificity, and the secondary endpoint is the rate of advanced breast cancers

    No association between fruit or vegetable consumption and the risk of colorectal cancer in Japan

    Get PDF
    In a pooled analysis of two prospective studies with 88 658 Japanese men and women, fruit and vegetable consumptions, were not associated with a lower risk of colorectal cancer (705 cases); multivariate relative risk (95% confidence interval) for the highest vs the lowest quartile of intake being 0.92 (0.70–1.19) and 1.00 (0.79–1.27), respectively

    TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals

    Get PDF
    Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect-e.g., with ASOs-is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn(-/-) mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with alpha-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics

    JAXA EARTH OBSERVATION DASHBOARD WITH COG AND WMS/WMTSS

    Get PDF
    JAXA has developed and implemented earth observation (EO) dashboard jointly with ESA and NASA. The development of the JAXA dashboard, along with the "Earth-graphy" website and the newly developed "JAXA Earth API" service, demonstrate JAXA's commitment to providing climate change and earth science information to users worldwide. The EO dashboard serves as a platform to deliver valuable data and information related to climate change. The WMS/WMTS technology allows users to visualize and interact with geospatial information by providing web-based mapping services. This technology enhances the user experience by enabling the display of satellite imagery, overlays, and other geospatial data layers within the EO dashboard. To further facilitate the efficient use of satellite data, JAXA has developed the JAXA Earth API service. This service offers a user-friendly interface for accessing and utilizing JAXA's Earth observation satellite image data. By providing an easy-to-use format, JAXA aims to promote the effective utilization of satellite data and encourage its widespread use. Overall, the development and operation of the JAXA dashboard, with its integration of COG format data, WMS/WMTS technology, Python-based API. This paper introduces the status of development of JAXA Earth Observation dashboard with COG format data, WMS/WMTS technology, phyton based API and JAXA Earth Observation missions

    Concurrent multiple sclerosis and amyotrophic lateral sclerosis: where inflammation and neurodegeneration meet?

    Get PDF
    The concurrence of multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) is exceedingly rare and the pathological features have not been examined extensively. Here we describe the key pathological features of a 40 year old man with pathologically confirmed concurrent MS and ALS
    corecore